{"id":"https://openalex.org/W3207204435","doi":"https://doi.org/10.1145/3474085.3475340","title":"Knowledge-Supervised Learning: Knowledge Consensus Constraints for Person Re-Identification","display_name":"Knowledge-Supervised Learning: Knowledge Consensus Constraints for Person Re-Identification","publication_year":2021,"publication_date":"2021-10-17","ids":{"openalex":"https://openalex.org/W3207204435","doi":"https://doi.org/10.1145/3474085.3475340","mag":"3207204435"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3474085.3475340","pdf_url":null,"source":{"id":"https://openalex.org/S4363608757","display_name":"Proceedings of the 30th ACM International Conference on Multimedia","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100336188","display_name":"Li Wang","orcid":"https://orcid.org/0000-0003-1817-8213"},"institutions":[{"id":"https://openalex.org/I4210144143","display_name":"Inspur (China)","ror":"https://ror.org/0474p4r72","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210144143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Li Wang","raw_affiliation_strings":["Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China","institution_ids":["https://openalex.org/I4210144143"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102813072","display_name":"Baoyu Fan","orcid":null},"institutions":[{"id":"https://openalex.org/I4210144143","display_name":"Inspur (China)","ror":"https://ror.org/0474p4r72","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210144143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Baoyu Fan","raw_affiliation_strings":["Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China","institution_ids":["https://openalex.org/I4210144143"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091834117","display_name":"Zhenhua Guo","orcid":"https://orcid.org/0000-0002-8201-0864"},"institutions":[{"id":"https://openalex.org/I4210144143","display_name":"Inspur (China)","ror":"https://ror.org/0474p4r72","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210144143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhenhua Guo","raw_affiliation_strings":["Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China","institution_ids":["https://openalex.org/I4210144143"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101568187","display_name":"Yaqian Zhao","orcid":"https://orcid.org/0000-0002-9170-0090"},"institutions":[{"id":"https://openalex.org/I4210144143","display_name":"Inspur (China)","ror":"https://ror.org/0474p4r72","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210144143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yaqian Zhao","raw_affiliation_strings":["Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China","institution_ids":["https://openalex.org/I4210144143"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101549172","display_name":"Runze Zhang","orcid":"https://orcid.org/0009-0003-6318-3342"},"institutions":[{"id":"https://openalex.org/I4210144143","display_name":"Inspur (China)","ror":"https://ror.org/0474p4r72","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210144143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Runze Zhang","raw_affiliation_strings":["Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China","institution_ids":["https://openalex.org/I4210144143"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064453711","display_name":"Rengang Li","orcid":"https://orcid.org/0000-0002-4297-4335"},"institutions":[{"id":"https://openalex.org/I4210144143","display_name":"Inspur (China)","ror":"https://ror.org/0474p4r72","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210144143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Rengang Li","raw_affiliation_strings":["Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China","institution_ids":["https://openalex.org/I4210144143"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074821242","display_name":"Weifeng Gong","orcid":"https://orcid.org/0009-0005-0213-8008"},"institutions":[{"id":"https://openalex.org/I4210144143","display_name":"Inspur (China)","ror":"https://ror.org/0474p4r72","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210144143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weifeng Gong","raw_affiliation_strings":["Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China","institution_ids":["https://openalex.org/I4210144143"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5043582248","display_name":"Endong Wang","orcid":"https://orcid.org/0000-0002-7715-0045"},"institutions":[{"id":"https://openalex.org/I4210144143","display_name":"Inspur (China)","ror":"https://ror.org/0474p4r72","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210144143"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Endong Wang","raw_affiliation_strings":["Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Inspur Electronic Information Industry Co., Ltd. & State Key Laboratory of High-end Server & Storage Technology, Beijing, China","institution_ids":["https://openalex.org/I4210144143"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.361,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.616717,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"1866","last_page":"1874"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9904,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12740","display_name":"Gait Recognition and Analysis","score":0.9877,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.4345185}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73121303},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6042153},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6037758},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.5231967},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.48661336},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.4345185},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32136828}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3474085.3475340","pdf_url":null,"source":{"id":"https://openalex.org/S4363608757","display_name":"Proceedings of the 30th ACM International Conference on Multimedia","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":33,"referenced_works":["https://openalex.org/W1982925187","https://openalex.org/W2097117768","https://openalex.org/W2132172482","https://openalex.org/W2511791013","https://openalex.org/W2584637367","https://openalex.org/W2806183416","https://openalex.org/W2883780447","https://openalex.org/W2936864631","https://openalex.org/W2948582784","https://openalex.org/W2952541350","https://openalex.org/W2954765307","https://openalex.org/W2962926870","https://openalex.org/W2963047834","https://openalex.org/W2963140444","https://openalex.org/W2963163009","https://openalex.org/W2963430933","https://openalex.org/W2963540523","https://openalex.org/W2963842104","https://openalex.org/W2966796096","https://openalex.org/W2980073905","https://openalex.org/W2986093954","https://openalex.org/W2990983138","https://openalex.org/W2995047097","https://openalex.org/W2997006708","https://openalex.org/W3034369739","https://openalex.org/W3034580371","https://openalex.org/W3035097537","https://openalex.org/W3035186652","https://openalex.org/W3035539956","https://openalex.org/W3035569526","https://openalex.org/W3093407505","https://openalex.org/W3100555577","https://openalex.org/W3105077954"],"related_works":["https://openalex.org/W3125011624","https://openalex.org/W3091955004","https://openalex.org/W2979236518","https://openalex.org/W2952760143","https://openalex.org/W2370917603","https://openalex.org/W2358318464","https://openalex.org/W2347897961","https://openalex.org/W2340870721","https://openalex.org/W2017776670","https://openalex.org/W1508631387"],"abstract_inverted_index":{"The":[0,69],"consensus":[1,70],"of":[2,60,119,128,206],"multiple":[3,52,57,78],"views":[4,53],"on":[5,17,64,153],"the":[6,35,61,65,75,108,201,214],"same":[7,62,66],"data":[8],"will":[9],"provide":[10],"extra":[11,39],"regularization,":[12],"thereby":[13],"improving":[14],"accuracy.":[15],"Based":[16],"this":[18,82],"idea,":[19],"we":[20,43],"proposed":[21,105],"a":[22,160,175,181],"novel":[23,101],"Knowledge-Supervised":[24],"Learning":[25],"(KSL)":[26],"method":[27,165],"for":[28,123,131,139],"person":[29],"re-identification":[30],"(Re-ID),":[31],"which":[32],"can":[33,92,196],"improve":[34],"performance":[36],"without":[37,184],"introducing":[38],"inference":[40],"cost.":[41],"Firstly,":[42],"introduce":[44,81],"isomorphic":[45],"auxiliary":[46],"training":[47,67],"strategy":[48],"to":[49,73,106,112,213],"conduct":[50],"basic":[51],"that":[54,89,110,159,193],"simultaneously":[55],"train":[56],"classifier":[58],"heads":[59],"network":[63],"data.":[68],"constraints":[71,102],"aim":[72],"maximize":[74],"agreement":[76],"among":[77],"views.":[79],"To":[80],"regular":[83],"constraint,":[84],"inspired":[85],"by":[86,174],"knowledge":[87,109,215],"distillation":[88],"paired":[90],"branches":[91],"be":[93,113],"trained":[94,166],"collaboratively":[95],"through":[96],"mutual":[97,137],"imitation":[98],"learning.":[99],"Three":[100],"losses":[103,148],"are":[104],"distill":[107],"needs":[111],"transferred":[114],"across":[115],"different":[116,145],"branches:":[117],"similarity":[118],"predicted":[120],"classification":[121],"probability":[122],"cosine":[124],"space":[125,133,142],"constraints,":[126,134],"distance":[127],"embedding":[129],"features":[130],"euclidean":[132],"hard":[135,140],"sample":[136,141],"mining":[138],"constraints.":[143],"From":[144],"perspectives,":[146],"these":[147,194],"complement":[149],"each":[150],"other.":[151],"Experiments":[152],"four":[154],"mainstream":[155],"Re-ID":[156,211],"datasets":[157],"show":[158],"standard":[161],"model":[162,183,218],"with":[163],"KSL":[164,179],"from":[167,200],"scratch":[168],"outperforms":[169,187],"its":[170],"ImageNet":[171,185],"pre-training":[172,186],"results":[173],"clear":[176],"margin.":[177],"With":[178],"method,":[180],"lightweight":[182],"most":[188],"large":[189],"models.":[190],"We":[191],"expect":[192],"discoveries":[195],"attract":[197],"some":[198],"attention":[199],"current":[202],"de":[203],"facto":[204],"paradigm":[205],"\"pre-training":[207],"and":[208],"fine-tuning\"":[209],"in":[210],"task":[212],"discovery":[216],"during":[217],"training.":[219]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3207204435","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":2}],"updated_date":"2025-01-20T08:51:24.853562","created_date":"2021-10-25"}