{"id":"https://openalex.org/W3178676199","doi":"https://doi.org/10.1145/3465456.3467639","title":"Binary Scoring Rules that Incentivize Precision","display_name":"Binary Scoring Rules that Incentivize Precision","publication_year":2021,"publication_date":"2021-07-18","ids":{"openalex":"https://openalex.org/W3178676199","doi":"https://doi.org/10.1145/3465456.3467639","mag":"3178676199"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3465456.3467639","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3465456.3467639","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3465456.3467639","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5078362852","display_name":"Eric Neyman","orcid":"https://orcid.org/0000-0002-6848-8802"},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"funder","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Eric Neyman","raw_affiliation_strings":["Columbia University, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5059340647","display_name":"Georgy Noarov","orcid":"https://orcid.org/0000-0001-5420-7080"},"institutions":[{"id":"https://openalex.org/I79576946","display_name":"University of Pennsylvania","ror":"https://ror.org/00b30xv10","country_code":"US","type":"funder","lineage":["https://openalex.org/I79576946"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Georgy Noarov","raw_affiliation_strings":["University of Pennsylvania, Philadelphia, PA, USA"],"affiliations":[{"raw_affiliation_string":"University of Pennsylvania, Philadelphia, PA, USA","institution_ids":["https://openalex.org/I79576946"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5075388037","display_name":"S. Matthew Weinberg","orcid":"https://orcid.org/0000-0001-7744-795X"},"institutions":[{"id":"https://openalex.org/I20089843","display_name":"Princeton University","ror":"https://ror.org/00hx57361","country_code":"US","type":"funder","lineage":["https://openalex.org/I20089843"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"S. Matthew Weinberg","raw_affiliation_strings":["Princeton University, Princeton, NJ, USA"],"affiliations":[{"raw_affiliation_string":"Princeton University, Princeton, NJ, USA","institution_ids":["https://openalex.org/I20089843"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":6,"citation_normalized_percentile":{"value":0.978032,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":80,"max":82},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11182","display_name":"Auction Theory and Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11182","display_name":"Auction Theory and Applications","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10991","display_name":"Game Theory and Voting Systems","score":0.993,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11674","display_name":"Sports Analytics and Performance","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/2002","display_name":"Economics and Econometrics"},"field":{"id":"https://openalex.org/fields/20","display_name":"Economics, Econometrics and Finance"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/scoring-rule","display_name":"Scoring rule","score":0.79726285},{"id":"https://openalex.org/keywords/stochastic-game","display_name":"Stochastic game","score":0.5193706},{"id":"https://openalex.org/keywords/coin-flipping","display_name":"Coin flipping","score":0.4612476}],"concepts":[{"id":"https://openalex.org/C63002673","wikidata":"https://www.wikidata.org/wiki/Q2260590","display_name":"Scoring rule","level":2,"score":0.79726285},{"id":"https://openalex.org/C202615002","wikidata":"https://www.wikidata.org/wiki/Q783507","display_name":"Differentiable function","level":2,"score":0.6550615},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.550201},{"id":"https://openalex.org/C2777382242","wikidata":"https://www.wikidata.org/wiki/Q6017816","display_name":"Index (typography)","level":2,"score":0.5209852},{"id":"https://openalex.org/C22171661","wikidata":"https://www.wikidata.org/wiki/Q1074380","display_name":"Stochastic game","level":2,"score":0.5193706},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.49608526},{"id":"https://openalex.org/C97399411","wikidata":"https://www.wikidata.org/wiki/Q825367","display_name":"Coin flipping","level":2,"score":0.4612476},{"id":"https://openalex.org/C179254644","wikidata":"https://www.wikidata.org/wiki/Q13222844","display_name":"Moment (physics)","level":2,"score":0.41484144},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.3686252},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.3460014},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.34582293},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34454015},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.23666263},{"id":"https://openalex.org/C144237770","wikidata":"https://www.wikidata.org/wiki/Q747534","display_name":"Mathematical economics","level":1,"score":0.23220965},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.18139756},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C74650414","wikidata":"https://www.wikidata.org/wiki/Q11397","display_name":"Classical mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3465456.3467639","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3465456.3467639","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/2002.10669","pdf_url":"http://arxiv.org/pdf/2002.10669","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2002.10669","pdf_url":"https://arxiv.org/pdf/2002.10669","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2002.10669","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3465456.3467639","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3465456.3467639","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CAREER, CCF-1942497, DGE-2036197"}],"datasets":[],"versions":["https://openalex.org/W3008468008","https://openalex.org/W3178676199"],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1545465591","https://openalex.org/W1979685007","https://openalex.org/W1983874169","https://openalex.org/W1998274472","https://openalex.org/W2021487517","https://openalex.org/W2024578467","https://openalex.org/W2025720061","https://openalex.org/W2027216529","https://openalex.org/W2029552385","https://openalex.org/W2073241381","https://openalex.org/W2130715829","https://openalex.org/W2133481610","https://openalex.org/W2551296595","https://openalex.org/W2592442830","https://openalex.org/W2767657742","https://openalex.org/W2902462695","https://openalex.org/W2950119841","https://openalex.org/W2963246254","https://openalex.org/W3008901784","https://openalex.org/W3040783655","https://openalex.org/W3102321609","https://openalex.org/W4239966440","https://openalex.org/W4243185739","https://openalex.org/W4252475223","https://openalex.org/W4299804667","https://openalex.org/W4387738080","https://openalex.org/W596545988","https://openalex.org/W98205965"],"related_works":["https://openalex.org/W4327738859","https://openalex.org/W4285277090","https://openalex.org/W2915071022","https://openalex.org/W2895888930","https://openalex.org/W2083226356","https://openalex.org/W2074833159","https://openalex.org/W2022413236","https://openalex.org/W1856092221","https://openalex.org/W1647416393","https://openalex.org/W1618449339"],"abstract_inverted_index":{"All":[0],"proper":[1,17,59,105,152,174],"scoring":[2,18,60,106,143,153,175,182,205,211],"rules":[3,19,212],"incentivize":[4,21],"an":[5,101,169],"expert":[6,39,64],"to":[7,54,66,130,159],"predict":[8,67],"\\emph{accurately}":[9],"(report":[10],"their":[11,43],"true":[12],"estimate),":[13],"but":[14,186],"not":[15,187],"all":[16,151],"equally":[20],"\\emph{precision}.":[22],"Rather":[23],"than":[24],"treating":[25],"the":[26,68,82,114,118,122,132,141,147,161,180,197,220],"expert's":[27,119],"belief":[28,44],"as":[29],"exogenously":[30],"given,":[31],"we":[32,193,208],"consider":[33,157],"a":[34,37,48,58,71,90],"model":[35],"where":[36,229],"rational":[38],"can":[40,80,199],"endogenously":[41],"refine":[42],"by":[45,57,203],"repeatedly":[46],"paying":[47],"fixed":[49],"cost,":[50],"and":[51,79,108,166,172,216],"is":[52,127,184],"incentivized":[53],"do":[55],"so":[56],"rule.":[61,176],"Specifically,":[62],"our":[63,214,223],"aims":[65],"probability":[69],"that":[70,110,196],"biased":[72],"coin":[73,83],"flipped":[74],"tomorrow":[75],"will":[76],"land":[77],"heads,":[78],"flip":[81],"any":[84],"number":[85,123],"of":[86,92,117,124,164,222],"times":[87],"today":[88,126],"at":[89],"cost":[91],"$c$":[93],"per":[94],"flip.":[95],"Our":[96,136],"first":[97],"main":[98,138],"result":[99,139],"defines":[100],"\\emph{incentivization":[102],"index}":[103],"for":[104],"rules,":[107],"proves":[109],"this":[111],"index":[112,149,171],"measures":[113],"expected":[115,134],"error":[116],"estimate":[120],"(where":[121],"flips":[125],"chosen":[128],"adaptively":[129],"maximize":[131],"predictor's":[133],"payoff).":[135],"second":[137],"finds":[140],"unique":[142],"rule":[144,183],"which":[145],"optimizes":[146],"incentivization":[148,170],"over":[150],"rules.":[154,206],"We":[155],"also":[156],"extensions":[158],"minimizing":[160],"$\\ell^{th}$":[162],"moment":[163],"error,":[165],"again":[167],"provide":[168],"optimal":[173],"In":[177,190],"some":[178],"cases,":[179,192],"resulting":[181],"differentiable,":[185],"infinitely":[188],"differentiable.":[189],"these":[191],"further":[194],"prove":[195],"optimum":[198],"be":[200],"uniformly":[201],"approximated":[202],"polynomial":[204],"Finally,":[207],"compare":[209],"common":[210],"via":[213],"measure,":[215],"include":[217],"simulations":[218],"confirming":[219],"relevance":[221],"measure":[224],"even":[225],"in":[226],"domains":[227],"outside":[228],"it":[230],"provably":[231],"applies.":[232]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3178676199","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":1}],"updated_date":"2025-03-16T06:54:07.986619","created_date":"2021-07-19"}