{"id":"https://openalex.org/W3196835517","doi":"https://doi.org/10.1145/3464426","title":"SE4ExSum: An Integrated Semantic-aware Neural Approach with Graph Convolutional Network for Extractive Text Summarization","display_name":"SE4ExSum: An Integrated Semantic-aware Neural Approach with Graph Convolutional Network for Extractive Text Summarization","publication_year":2021,"publication_date":"2021-09-01","ids":{"openalex":"https://openalex.org/W3196835517","doi":"https://doi.org/10.1145/3464426","mag":"3196835517"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3464426","pdf_url":null,"source":{"id":"https://openalex.org/S4306421405","display_name":"ACM Transactions on Asian and Low-Resource Language Information Processing","issn_l":"2375-4699","issn":["2375-4699","2375-4702"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5006709815","display_name":"Tham Vo","orcid":"https://orcid.org/0000-0001-7291-4168"},"institutions":[{"id":"https://openalex.org/I4210111957","display_name":"B\u00ecnh D\u01b0\u01a1ng University","ror":"https://ror.org/02b9zqw68","country_code":"VN","type":"education","lineage":["https://openalex.org/I4210111957"]},{"id":"https://openalex.org/I4391012539","display_name":"Thu Dau Mot University","ror":"https://ror.org/010y5b925","country_code":null,"type":"funder","lineage":["https://openalex.org/I4391012539"]}],"countries":["VN"],"is_corresponding":true,"raw_author_name":"Tham Vo","raw_affiliation_strings":["Thu Dau Mot University, Binh Duong, Vietnam"],"affiliations":[{"raw_affiliation_string":"Thu Dau Mot University, Binh Duong, Vietnam","institution_ids":["https://openalex.org/I4210111957","https://openalex.org/I4391012539"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5006709815"],"corresponding_institution_ids":["https://openalex.org/I4210111957","https://openalex.org/I4391012539"],"apc_list":null,"apc_paid":null,"fwci":0.665,"has_fulltext":false,"cited_by_count":6,"citation_normalized_percentile":{"value":0.712952,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":82},"biblio":{"volume":"20","issue":"6","first_page":"1","last_page":"22"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Text and Document Classification Technologies","score":0.9594,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.4537804}],"concepts":[{"id":"https://openalex.org/C170858558","wikidata":"https://www.wikidata.org/wiki/Q1394144","display_name":"Automatic summarization","level":2,"score":0.9009936},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8636271},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6404323},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.62713516},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.6268425},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.5787656},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.50288576},{"id":"https://openalex.org/C66945725","wikidata":"https://www.wikidata.org/wiki/Q18388823","display_name":"Text graph","level":3,"score":0.48416597},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.472606},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.47097373},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.4537804},{"id":"https://openalex.org/C66322947","wikidata":"https://www.wikidata.org/wiki/Q11658","display_name":"Transformer","level":3,"score":0.4446898},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.4311533},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.3714343},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.2918791},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.12715918},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3464426","pdf_url":null,"source":{"id":"https://openalex.org/S4306421405","display_name":"ACM Transactions on Asian and Low-Resource Language Information Processing","issn_l":"2375-4699","issn":["2375-4699","2375-4702"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.62,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[{"funder":"https://openalex.org/F4320318527","funder_display_name":"Tr\u01b0\u1eddng \u0110\u1ea1i H\u1ecdc Th\u1ee7 D\u1ea7u M\u1ed9t","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W2123442489","https://openalex.org/W2239718591","https://openalex.org/W2250539671","https://openalex.org/W2258706460","https://openalex.org/W2270798212","https://openalex.org/W2317879529","https://openalex.org/W2593581739","https://openalex.org/W2597601064","https://openalex.org/W2599674900","https://openalex.org/W2607303097","https://openalex.org/W2611929813","https://openalex.org/W2626778328","https://openalex.org/W2747329762","https://openalex.org/W2750779823","https://openalex.org/W2889518897","https://openalex.org/W2930957955","https://openalex.org/W2942904230","https://openalex.org/W2963227052","https://openalex.org/W2963607157","https://openalex.org/W2970263339","https://openalex.org/W2970892365","https://openalex.org/W2974016341","https://openalex.org/W2985808369","https://openalex.org/W3009157386","https://openalex.org/W3034961030","https://openalex.org/W3042185737","https://openalex.org/W3117568220","https://openalex.org/W4239019441"],"related_works":["https://openalex.org/W4385234707","https://openalex.org/W4283069128","https://openalex.org/W4238363396","https://openalex.org/W2996251560","https://openalex.org/W2986470681","https://openalex.org/W2794632761","https://openalex.org/W2785821657","https://openalex.org/W2590756584","https://openalex.org/W2359511970","https://openalex.org/W2126232808"],"abstract_inverted_index":{"Recently,":[0],"advanced":[1,77],"techniques":[2],"in":[3,25,104,193],"deep":[4],"learning":[5,144],"such":[6,38,81],"as":[7,39,82,84],"recurrent":[8],"neural":[9],"network":[10],"(GRU,":[11],"LSTM":[12],"and":[13,15,19,42],"Bi-LSTM)":[14],"auto-encoding":[16],"(attention-based":[17],"transformer":[18],"BERT)":[20],"have":[21,44],"achieved":[22],"great":[23],"successes":[24],"multiple":[26],"application":[27],"domains":[28],"including":[29],"text":[30,35,50,78,119,178,198],"summarization.":[31],"Recent":[32],"state-of-the-art":[33,197],"encoding-based":[34],"summarization":[36,51,179,199],"models":[37,55],"BertSum,":[40],"PreSum":[41],"DiscoBert":[43],"demonstrated":[45],"significant":[46],"improvements":[47],"on":[48,183],"extractive":[49],"tasks.":[52],"However,":[53],"recent":[54,76,196],"still":[56],"encounter":[57],"common":[58],"problems":[59],"related":[60],"to":[61,91,165,175],"the":[62,67,70,85,94,133,145,153,167,177,187],"language-specific":[63],"dependency":[64],"which":[65,171],"requires":[66],"supports":[68],"of":[69,96,135,148,189],"external":[71],"NLP":[72],"tools.":[73],"Besides":[74],"that,":[75],"representation":[79,95,170],"methods,":[80],"BERT":[83],"sentence-level":[86],"textual":[87],"encoder,":[88],"also":[89],"fail":[90],"fully":[92],"capture":[93],"a":[97,109,149],"full-length":[98],"document.":[99,151],"To":[100],"address":[101],"these":[102],"challenges,":[103],"this":[105],"paper":[106],"we":[107],"proposed":[108,127,191],"novel":[110],"s":[111],"emantic-ware":[112],"e":[113],"mbedding":[114],"approach":[115],"for":[116,142],"ex":[117],"tractive":[118],"sum":[120],"marization":[121],",":[122],"called":[123],"as:":[124],"SE4ExSum.":[125],"Our":[126],"SE4ExSum":[128],"is":[129,163,172],"an":[130],"integration":[131],"between":[132],"use":[134],"feature":[136],"graph-of-words":[137],"(FGOW)":[138],"with":[139,195],"BERT-based":[140],"encoder":[141,162],"effectively":[143],"word/sentence-level":[146],"representations":[147],"given":[150],"Then,":[152],"g":[154],"raph":[155],"c":[156],"onvolutional":[157],"n":[158],"etwork":[159],"(GCN)":[160],"based":[161],"applied":[164],"learn":[166],"global":[168],"document's":[169],"then":[173],"used":[174],"facilitate":[176],"task.":[180],"Extensive":[181],"experiments":[182],"benchmark":[184],"datasets":[185],"show":[186],"effectiveness":[188],"our":[190],"model":[192],"comparing":[194],"models.":[200]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3196835517","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":1}],"updated_date":"2025-03-20T03:12:08.580065","created_date":"2021-09-13"}