{"id":"https://openalex.org/W3198543410","doi":"https://doi.org/10.1145/3451421.3451466","title":"Automatic segmentation of prostate cancer based on fusion multi-parameter MRI images","display_name":"Automatic segmentation of prostate cancer based on fusion multi-parameter MRI images","publication_year":2020,"publication_date":"2020-12-05","ids":{"openalex":"https://openalex.org/W3198543410","doi":"https://doi.org/10.1145/3451421.3451466","mag":"3198543410"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3451421.3451466","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100652770","display_name":"Xunan Huang","orcid":"https://orcid.org/0000-0002-4625-0203"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xunan Huang","raw_affiliation_strings":["Xidian University, China"],"affiliations":[{"raw_affiliation_string":"Xidian University, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050143212","display_name":"Guang Jia","orcid":"https://orcid.org/0000-0001-5306-5607"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"funder","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guang Jia","raw_affiliation_strings":["Xidian University, China"],"affiliations":[{"raw_affiliation_string":"Xidian University, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100335200","display_name":"Bo Zhang","orcid":"https://orcid.org/0000-0001-7830-044X"},"institutions":[{"id":"https://openalex.org/I9916479","display_name":"Air Force Medical University","ror":"https://ror.org/00ms48f15","country_code":"CN","type":"funder","lineage":["https://openalex.org/I9916479"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bo Zhang","raw_affiliation_strings":["Tangdu Hospital Fourth Military Medical University, China"],"affiliations":[{"raw_affiliation_string":"Tangdu Hospital Fourth Military Medical University, China","institution_ids":["https://openalex.org/I9916479"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016175407","display_name":"Michael V. Knopp","orcid":"https://orcid.org/0000-0001-9543-2962"},"institutions":[{"id":"https://openalex.org/I52357470","display_name":"The Ohio State University","ror":"https://ror.org/00rs6vg23","country_code":"US","type":"funder","lineage":["https://openalex.org/I52357470"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Michael V. Knopp","raw_affiliation_strings":["The Ohio State University, USA"],"affiliations":[{"raw_affiliation_string":"The Ohio State University, USA","institution_ids":["https://openalex.org/I52357470"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5052441083","display_name":"Zarine K. Shah","orcid":"https://orcid.org/0000-0002-0354-9678"},"institutions":[{"id":"https://openalex.org/I52357470","display_name":"The Ohio State University","ror":"https://ror.org/00rs6vg23","country_code":"US","type":"funder","lineage":["https://openalex.org/I52357470"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zarine K. Shah","raw_affiliation_strings":["The Ohio State University, USA"],"affiliations":[{"raw_affiliation_string":"The Ohio State University, USA","institution_ids":["https://openalex.org/I52357470"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":"213","last_page":"218"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9908,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9908,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11885","display_name":"MRI in cancer diagnosis","score":0.9834,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T14510","display_name":"Medical Imaging and Analysis","score":0.975,"subfield":{"id":"https://openalex.org/subfields/2204","display_name":"Biomedical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5853817},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.5798647},{"id":"https://openalex.org/C2780192828","wikidata":"https://www.wikidata.org/wiki/Q181257","display_name":"Prostate cancer","level":3,"score":0.570429},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5690214},{"id":"https://openalex.org/C158525013","wikidata":"https://www.wikidata.org/wiki/Q2593739","display_name":"Fusion","level":2,"score":0.5607587},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.5308472},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.50905126},{"id":"https://openalex.org/C143409427","wikidata":"https://www.wikidata.org/wiki/Q161238","display_name":"Magnetic resonance imaging","level":2,"score":0.46410573},{"id":"https://openalex.org/C2776235491","wikidata":"https://www.wikidata.org/wiki/Q9625","display_name":"Prostate","level":3,"score":0.44904837},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.4391906},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3236262},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.23134056},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.2191576},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.08085179},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3451421.3451466","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/3","score":0.57,"display_name":"Good health and well-being"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W2049522781","https://openalex.org/W2107411682","https://openalex.org/W2119671639","https://openalex.org/W2151741113","https://openalex.org/W2404945401","https://openalex.org/W2593287453","https://openalex.org/W2623298038","https://openalex.org/W2756834619","https://openalex.org/W2790590611","https://openalex.org/W2907371159","https://openalex.org/W2911088898"],"related_works":["https://openalex.org/W4281885123","https://openalex.org/W3171449477","https://openalex.org/W299695548","https://openalex.org/W2384122898","https://openalex.org/W2376423713","https://openalex.org/W2088520467","https://openalex.org/W2075763133","https://openalex.org/W1583600832","https://openalex.org/W1522196789","https://openalex.org/W151774199"],"abstract_inverted_index":{"Prostate":[0],"cancer":[1,7,87,96,116,162],"is":[2,69,79,123,134,150],"the":[3,12,26,37,45,73,110,127,131,137,146,156,166],"second":[4],"most":[5],"common":[6],"in":[8,25,36],"men":[9],"worldwide.":[10],"In":[11],"past":[13],"few":[14],"decades,":[15],"multi-parameter":[16,84],"MRI":[17,99,129],"images":[18,58],"have":[19,32],"been":[20],"used":[21,124],"more":[22,24,54],"and":[23,31,59,144,164],"detection":[27,39],"of":[28,40,47,64],"prostate":[29,41,86,95,115,161],"cancer,":[30],"important":[33],"clinical":[34,169],"significance":[35],"invasive":[38],"cancer.":[42],"However,":[43],"as":[44],"amount":[46],"data":[48],"increases,":[49],"radiologists":[50],"need":[51],"to":[52,56,80,91,113,125,136],"devote":[53],"energy":[55],"recognizing":[57],"simultaneously":[60],"observing":[61],"multiple":[62],"sequences":[63],"magnetic":[65],"resonance":[66],"images,":[67],"which":[68],"largely":[70],"affected":[71],"by":[72],"doctor's":[74],"subjective":[75],"judgment.":[76],"Our":[77],"goal":[78],"build":[81],"a":[82,103],"new":[83],"MRI-based":[85],"tissue":[88,97,163],"segmentation":[89],"system":[90],"help":[92],"doctors":[93],"identify":[94],"from":[98],"data.":[100],"We":[101],"propose":[102],"convolutional":[104,138],"neural":[105,119,139],"network":[106,140],"structure":[107,141],"based":[108],"on":[109],"U-net":[111],"model":[112],"segment":[114,160],"tissue.":[117],"A":[118],"network-based":[120],"fusion":[121],"algorithm":[122,157],"fuse":[126],"two-parameter":[128],"data,":[130],"fused":[132],"image":[133,149],"sent":[135],"for":[142,168],"training,":[143],"then":[145],"test":[147],"set":[148],"tested.":[151],"Experimental":[152],"results":[153],"show":[154],"that":[155],"can":[158],"effectively":[159],"has":[165],"potential":[167],"application.":[170]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3198543410","counts_by_year":[],"updated_date":"2025-01-25T19:32:36.187817","created_date":"2021-09-13"}