{"id":"https://openalex.org/W3186468161","doi":"https://doi.org/10.1145/3450626.3459883","title":"Learning active quasistatic physics-based models from data","display_name":"Learning active quasistatic physics-based models from data","publication_year":2021,"publication_date":"2021-07-19","ids":{"openalex":"https://openalex.org/W3186468161","doi":"https://doi.org/10.1145/3450626.3459883","mag":"3186468161"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3450626.3459883","pdf_url":null,"source":{"id":"https://openalex.org/S185367456","display_name":"ACM Transactions on Graphics","issn_l":"0730-0301","issn":["0730-0301","1557-7368"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5013174582","display_name":"Sangeetha Srinivasan","orcid":"https://orcid.org/0000-0002-6890-5274"},"institutions":[{"id":"https://openalex.org/I135310074","display_name":"University of Wisconsin\u2013Madison","ror":"https://ror.org/01y2jtd41","country_code":"US","type":"funder","lineage":["https://openalex.org/I135310074"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sangeetha Grama Srinivasan","raw_affiliation_strings":["University of Wisconsin-Madison"],"affiliations":[{"raw_affiliation_string":"University of Wisconsin-Madison","institution_ids":["https://openalex.org/I135310074"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5027214378","display_name":"Qisi Wang","orcid":"https://orcid.org/0000-0002-8741-7559"},"institutions":[{"id":"https://openalex.org/I135310074","display_name":"University of Wisconsin\u2013Madison","ror":"https://ror.org/01y2jtd41","country_code":"US","type":"funder","lineage":["https://openalex.org/I135310074"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Qisi Wang","raw_affiliation_strings":["University of Wisconsin-Madison"],"affiliations":[{"raw_affiliation_string":"University of Wisconsin-Madison","institution_ids":["https://openalex.org/I135310074"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016067326","display_name":"Junior Rojas","orcid":"https://orcid.org/0000-0001-9351-039X"},"institutions":[{"id":"https://openalex.org/I223532165","display_name":"University of Utah","ror":"https://ror.org/03r0ha626","country_code":"US","type":"funder","lineage":["https://openalex.org/I223532165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Junior Rojas","raw_affiliation_strings":["University of Utah"],"affiliations":[{"raw_affiliation_string":"University of Utah","institution_ids":["https://openalex.org/I223532165"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032464233","display_name":"Gergely Kl\u00e1r","orcid":"https://orcid.org/0000-0002-4569-5956"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Gergely Kl\u00e1r","raw_affiliation_strings":["Weta Digital"],"affiliations":[{"raw_affiliation_string":"Weta Digital","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5028216970","display_name":"Ladislav Kavan","orcid":"https://orcid.org/0000-0003-3342-4603"},"institutions":[{"id":"https://openalex.org/I223532165","display_name":"University of Utah","ror":"https://ror.org/03r0ha626","country_code":"US","type":"funder","lineage":["https://openalex.org/I223532165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ladislav Kavan","raw_affiliation_strings":["University of Utah"],"affiliations":[{"raw_affiliation_string":"University of Utah","institution_ids":["https://openalex.org/I223532165"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5089697513","display_name":"Eftychios Sifakis","orcid":"https://orcid.org/0000-0001-5608-3085"},"institutions":[{"id":"https://openalex.org/I135310074","display_name":"University of Wisconsin\u2013Madison","ror":"https://ror.org/01y2jtd41","country_code":"US","type":"funder","lineage":["https://openalex.org/I135310074"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Eftychios Sifakis","raw_affiliation_strings":["University of Wisconsin-Madison and Weta Digital"],"affiliations":[{"raw_affiliation_string":"University of Wisconsin-Madison and Weta Digital","institution_ids":["https://openalex.org/I135310074"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.484,"has_fulltext":false,"cited_by_count":15,"citation_normalized_percentile":{"value":0.618288,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":"40","issue":"4","first_page":"1","last_page":"14"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10812","display_name":"Human Pose and Action Recognition","score":0.9978,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10719","display_name":"3D Shape Modeling and Analysis","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/2206","display_name":"Computational Mechanics"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/physics-engine","display_name":"Physics engine","score":0.42956817}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6258602},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5184733},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.5098199},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.49693158},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.44635212},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.44514555},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4396487},{"id":"https://openalex.org/C190390380","wikidata":"https://www.wikidata.org/wiki/Q62505","display_name":"Physics engine","level":2,"score":0.42956817},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3450626.3459883","pdf_url":null,"source":{"id":"https://openalex.org/S185367456","display_name":"ACM Transactions on Graphics","issn_l":"0730-0301","issn":["0730-0301","1557-7368"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319798","host_organization_name":"Association for Computing Machinery","host_organization_lineage":["https://openalex.org/P4310319798"],"host_organization_lineage_names":["Association for Computing Machinery"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Quality education","score":0.62,"id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":49,"referenced_works":["https://openalex.org/W1588539311","https://openalex.org/W1902871316","https://openalex.org/W1969960922","https://openalex.org/W1985117280","https://openalex.org/W2018231630","https://openalex.org/W2022890264","https://openalex.org/W2024243735","https://openalex.org/W2035104324","https://openalex.org/W2041393713","https://openalex.org/W2046090405","https://openalex.org/W2055035360","https://openalex.org/W2055819391","https://openalex.org/W2067910404","https://openalex.org/W2114106563","https://openalex.org/W2118080926","https://openalex.org/W2134389879","https://openalex.org/W2156410578","https://openalex.org/W2237250383","https://openalex.org/W2460468435","https://openalex.org/W2466284997","https://openalex.org/W2510140697","https://openalex.org/W2738703359","https://openalex.org/W2739069563","https://openalex.org/W2739193376","https://openalex.org/W2753738274","https://openalex.org/W2799116135","https://openalex.org/W2811426698","https://openalex.org/W2914872454","https://openalex.org/W2957926190","https://openalex.org/W2965639322","https://openalex.org/W2966651785","https://openalex.org/W2968042644","https://openalex.org/W2979282880","https://openalex.org/W2985010153","https://openalex.org/W2988986133","https://openalex.org/W2990300161","https://openalex.org/W3015873132","https://openalex.org/W3048366741","https://openalex.org/W3048381483","https://openalex.org/W3080572089","https://openalex.org/W3108094035","https://openalex.org/W3109377857","https://openalex.org/W3109952375","https://openalex.org/W3110192606","https://openalex.org/W3138143451","https://openalex.org/W3214811308","https://openalex.org/W4241614188","https://openalex.org/W427907635","https://openalex.org/W788203010"],"related_works":["https://openalex.org/W4375867731","https://openalex.org/W4296209631","https://openalex.org/W4294811468","https://openalex.org/W4235240664","https://openalex.org/W3097449145","https://openalex.org/W2965083567","https://openalex.org/W2561617217","https://openalex.org/W2389214306","https://openalex.org/W2355801475","https://openalex.org/W2353505378"],"abstract_inverted_index":{"Humans":[0],"and":[1,25,74,109,127,174,190,251],"animals":[2],"can":[3,34,61],"control":[4,66,175],"their":[5,36],"bodies":[6,24],"to":[7,76,81,132,145,197,239],"generate":[8],"a":[9,50,64,98,103,113,187,209,232],"wide":[10],"range":[11],"of":[12,30,53,56,166,176,217,220,234],"motions":[13],"via":[14,38,255],"low-dimensional":[15,65],"action":[16],"signals":[17],"representing":[18],"high-level":[19],"goals.":[20],"As":[21],"such,":[22],"human":[23],"faces":[26],"are":[27],"prime":[28,215],"examples":[29],"active":[31,58,95],"objects,":[32],"which":[33],"affect":[35],"shape":[37],"an":[39,57],"internal":[40],"actuation":[41,178],"mechanism.":[42],"This":[43],"paper":[44],"explores":[45],"the":[46,71,129,137,167,172,177,182,218],"following":[47],"proposition:":[48],"given":[49],"training":[51,72,188],"set":[52,73],"example":[54],"poses":[55,139],"deformable":[59],"object,":[60],"we":[62,92,161,229],"learn":[63,133,171],"space":[67],"that":[68,135,194],"could":[69],"reproduce":[70],"generalize":[75],"new":[77],"poses?":[78],"In":[79,143],"contrast":[80,144],"popular":[82],"machine":[83],"learning":[84,125],"methods":[85],"for":[86],"dimensionality":[87],"reduction":[88],"such":[89],"as":[90,206,208],"auto-encoders,":[91],"model":[93],"our":[94,221],"objects":[96],"in":[97],"physics-based":[99,106,141],"way.":[100],"We":[101,185],"utilize":[102],"differentiable,":[104],"quasistatic,":[105],"simulation":[107,212],"layer":[108,120],"combine":[110],"it":[111],"with":[112,205],"decoder-type":[114],"neural":[115],"network.":[116],"Our":[117],"differentiable":[118],"physics":[119],"naturally":[121],"fits":[122],"into":[123],"deep":[124],"frameworks":[126],"allows":[128],"decoder":[130],"network":[131],"actuations":[134],"reach":[136],"desired":[138],"after":[140],"simulation.":[142],"modeling":[146,223],"approaches":[147],"where":[148,228],"users":[149],"build":[150],"anatomical":[151],"models":[152],"from":[153,181,246],"first":[154],"principles,":[155],"medical":[156,159],"literature":[157],"or":[158],"imaging,":[160],"do":[162],"not":[163],"presume":[164],"knowledge":[165],"underlying":[168],"musculature,":[169],"but":[170],"structure":[173],"mechanism":[179],"directly":[180],"input":[183,235],"data.":[184],"present":[186],"paradigm":[189],"several":[191],"scalability-oriented":[192],"enhancements":[193],"allow":[195],"us":[196],"train":[198,230],"effectively":[199],"while":[200,237],"accommodating":[201],"high-resolution":[202],"volumetric":[203],"models,":[204],"many":[207],"quarter":[210],"million":[211],"elements.":[213],"The":[214],"demonstration":[216],"efficacy":[219],"example-driven":[222],"framework":[224],"targets":[225],"facial":[226,244],"animation,":[227],"on":[231],"collection":[233],"expressions":[236],"generalizing":[238],"unseen":[240],"poses,":[241],"drive":[242],"detailed":[243],"animation":[245],"sparse":[247],"motion":[248],"capture":[249],"input,":[250],"facilitate":[252],"expression":[253],"sculpting":[254],"direct":[256],"manipulation.":[257]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3186468161","counts_by_year":[{"year":2024,"cited_by_count":5},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":5}],"updated_date":"2025-03-16T08:08:40.925587","created_date":"2021-08-02"}