{"id":"https://openalex.org/W3175315365","doi":"https://doi.org/10.1145/3448016.3452769","title":"TSExplain: Surfacing Evolving Explanations for Time Series","display_name":"TSExplain: Surfacing Evolving Explanations for Time Series","publication_year":2021,"publication_date":"2021-06-09","ids":{"openalex":"https://openalex.org/W3175315365","doi":"https://doi.org/10.1145/3448016.3452769","mag":"3175315365"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3448016.3452769","pdf_url":null,"source":{"id":"https://openalex.org/S4363608845","display_name":"Proceedings of the 2022 International Conference on Management of Data","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101600245","display_name":"Yiru Chen","orcid":"https://orcid.org/0009-0007-4653-7419"},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"education","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yiru Chen","raw_affiliation_strings":["Columbia University, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5090828085","display_name":"Silu Huang","orcid":"https://orcid.org/0000-0002-5291-0167"},"institutions":[{"id":"https://openalex.org/I1290206253","display_name":"Microsoft (United States)","ror":"https://ror.org/00d0nc645","country_code":"US","type":"company","lineage":["https://openalex.org/I1290206253"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Silu Huang","raw_affiliation_strings":["Microsoft Research, Redmond, WA, USA"],"affiliations":[{"raw_affiliation_string":"Microsoft Research, Redmond, WA, USA","institution_ids":["https://openalex.org/I1290206253"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.404,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.447141,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":72,"max":76},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.999,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9955,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10799","display_name":"Data Visualization and Analytics","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C113954288","wikidata":"https://www.wikidata.org/wiki/Q186885","display_name":"Timestamp","level":2,"score":0.6797918},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63782555},{"id":"https://openalex.org/C33676613","wikidata":"https://www.wikidata.org/wiki/Q13415176","display_name":"Dimension (graph theory)","level":2,"score":0.5652352},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.55779356},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.5220013},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.5085963},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.45522723},{"id":"https://openalex.org/C3008058167","wikidata":"https://www.wikidata.org/wiki/Q84263196","display_name":"Coronavirus disease 2019 (COVID-19)","level":4,"score":0.43844846},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.18699229},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.14733881},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.100448966},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.08633214},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2779134260","wikidata":"https://www.wikidata.org/wiki/Q12136","display_name":"Disease","level":2,"score":0.0},{"id":"https://openalex.org/C142724271","wikidata":"https://www.wikidata.org/wiki/Q7208","display_name":"Pathology","level":1,"score":0.0},{"id":"https://openalex.org/C524204448","wikidata":"https://www.wikidata.org/wiki/Q788926","display_name":"Infectious disease (medical specialty)","level":3,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3448016.3452769","pdf_url":null,"source":{"id":"https://openalex.org/S4363608845","display_name":"Proceedings of the 2022 International Conference on Management of Data","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":8,"referenced_works":["https://openalex.org/W2000809552","https://openalex.org/W2024834471","https://openalex.org/W2047182010","https://openalex.org/W2613751718","https://openalex.org/W2752425993","https://openalex.org/W2798893697","https://openalex.org/W3099915241","https://openalex.org/W4243064622"],"related_works":["https://openalex.org/W2622688551","https://openalex.org/W2469862403","https://openalex.org/W2166378262","https://openalex.org/W2119012848","https://openalex.org/W2060561905","https://openalex.org/W2035891203","https://openalex.org/W1990205660","https://openalex.org/W1986883493","https://openalex.org/W1550175370","https://openalex.org/W1417711376"],"abstract_inverted_index":{"Understanding":[0],"the":[1,24,33,64,75,83,109,119,143,149,157],"underlying":[2,65],"explanations":[3,34,49,67,111,116],"for":[4,31,68],"what":[5],"has":[6],"happened":[7],"is":[8],"more":[9,11],"and":[10,86,106,112,156,161,174],"crucial":[12],"in":[13,50,122,154],"today's":[14],"business":[15],"decision-making":[16],"processes.":[17],"Existing":[18],"explanation":[19,76],"engines":[20],"focus":[21],"on":[22,90],"explaining":[23],"difference":[25],"between":[26],"two":[27,43],"given":[28],"sets.":[29],"However,":[30],"time-series,":[32],"usually":[35],"evolve":[36],"as":[37,78,93],"time":[38,84],"advances.":[39],"Thus,":[40],"only":[41],"considering":[42],"end":[44],"timestamps":[45],"would":[46],"miss":[47],"all":[48,176],"between.":[51],"To":[52],"mitigate":[53],"this,":[54],"we":[55],"demonstrate":[56],"TSExplain,":[57],"a":[58,79],"system":[59],"to":[60,104,118],"help":[61],"users":[62],"understand":[63],"evolving":[66,110],"any":[69],"aggregated":[70],"time-series.":[71],"Internally,":[72],"TSExplain":[73],"models":[74],"problem":[77,81],"segmentation":[80],"over":[82],"dimension":[85],"uses":[87],"existing":[88],"works":[89],"two-sets":[91],"diff":[92],"building":[94],"blocks.":[95],"In":[96],"our":[97],"demonstration,":[98],"conference":[99],"attendees":[100],"will":[101],"be":[102],"able":[103],"easily":[105],"interactively":[107],"explore":[108],"visualize":[113],"how":[114],"these":[115],"contribute":[117],"overall":[120],"changes":[121],"various":[123],"datasets:":[124],"COVID-19,":[125],"S&P500,":[126],"Iowa":[127],"Liquor":[128,164],"Sales.":[129],"Questions-like":[130],"\"which":[131,146],"states":[132],"make":[133],"COVID-19":[134],"total":[135],"confirmed":[136],"case":[137],"number":[138],"go":[139],"up":[140],"dramatically":[141],"during":[142],"past":[144],"year?\",":[145],"stocks":[147],"drive":[148],"dramatic":[150],"crashes":[151],"of":[152],"S&P500":[153],"Mar":[155],"quick":[158],"rebound":[159],"later?\",":[160],"\"how":[162],"does":[163],"sales":[165],"trend":[166],"look":[167],"like":[168],"from":[169],"January":[170],"2020":[171],"till":[172],"now":[173],"why\"-can":[175],"get":[177],"well-answered":[178],"by":[179],"TSExplain.":[180]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3175315365","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1}],"updated_date":"2025-01-18T01:31:40.675449","created_date":"2021-07-05"}