{"id":"https://openalex.org/W3175643212","doi":"https://doi.org/10.1145/3447555.3466592","title":"Additive Gaussian process prediction for electrical loads compared with deep learning models","display_name":"Additive Gaussian process prediction for electrical loads compared with deep learning models","publication_year":2021,"publication_date":"2021-06-22","ids":{"openalex":"https://openalex.org/W3175643212","doi":"https://doi.org/10.1145/3447555.3466592","mag":"3175643212"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3447555.3466592","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5037855655","display_name":"Yifu Ding","orcid":"https://orcid.org/0000-0002-4629-5858"},"institutions":[{"id":"https://openalex.org/I4210146410","display_name":"Science Oxford","ror":"https://ror.org/04j8yhy50","country_code":"GB","type":"nonprofit","lineage":["https://openalex.org/I4210146410"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Yifu Ding","raw_affiliation_strings":["Energy and Power Group, Department of Engineering Science, Oxford, UK"],"affiliations":[{"raw_affiliation_string":"Energy and Power Group, Department of Engineering Science, Oxford, UK","institution_ids":["https://openalex.org/I4210146410"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5058099365","display_name":"M. B. McCULLOCH","orcid":null},"institutions":[{"id":"https://openalex.org/I4210146410","display_name":"Science Oxford","ror":"https://ror.org/04j8yhy50","country_code":"GB","type":"nonprofit","lineage":["https://openalex.org/I4210146410"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Malcolm McCulloch","raw_affiliation_strings":["Energy and Power Group, Department of Engineering Science, Oxford, UK"],"affiliations":[{"raw_affiliation_string":"Energy and Power Group, Department of Engineering Science, Oxford, UK","institution_ids":["https://openalex.org/I4210146410"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.356,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.340018,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":56,"max":66},"biblio":{"volume":null,"issue":null,"first_page":"499","last_page":"506"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9957,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11276","display_name":"Solar Radiation and Photovoltaics","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.54581887},{"id":"https://openalex.org/keywords/feature-engineering","display_name":"Feature Engineering","score":0.41953045}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7370175},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.729459},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.72864574},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6826576},{"id":"https://openalex.org/C61326573","wikidata":"https://www.wikidata.org/wiki/Q1496376","display_name":"Gaussian process","level":3,"score":0.670977},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.6619235},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.54581887},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.4784258},{"id":"https://openalex.org/C81692654","wikidata":"https://www.wikidata.org/wiki/Q225926","display_name":"Kriging","level":2,"score":0.44066718},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4329393},{"id":"https://openalex.org/C2778827112","wikidata":"https://www.wikidata.org/wiki/Q22245680","display_name":"Feature engineering","level":3,"score":0.41953045},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.3353534},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.10361308},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3447555.3466592","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":13,"referenced_works":["https://openalex.org/W1994005439","https://openalex.org/W2592285292","https://openalex.org/W2625224297","https://openalex.org/W2791111686","https://openalex.org/W2809710708","https://openalex.org/W2811152378","https://openalex.org/W2940355724","https://openalex.org/W2948490758","https://openalex.org/W2963238274","https://openalex.org/W2974231133","https://openalex.org/W3037712939","https://openalex.org/W3046998562","https://openalex.org/W4379927610"],"related_works":["https://openalex.org/W566010457","https://openalex.org/W4311388919","https://openalex.org/W4300066510","https://openalex.org/W4293503520","https://openalex.org/W3134152097","https://openalex.org/W2966696655","https://openalex.org/W2803685231","https://openalex.org/W2600092203","https://openalex.org/W2056958800","https://openalex.org/W1964286703"],"abstract_inverted_index":{"Probabilistic":[0],"prediction":[1,34],"for":[2,11,53,115],"electrical":[3,56],"loads":[4],"receives":[5],"more":[6],"attention":[7],"in":[8,59,69],"recent":[9],"years":[10],"leveraging":[12],"big":[13],"data":[14],"and":[15,78,85],"assessing":[16],"diverse":[17],"scenarios.":[18],"Since":[19],"the":[20,32,54,61,70,76,100,111],"classical":[21],"machine":[22],"learning":[23,82,108],"(ML)":[24],"model":[25,39,52,104],"as":[26,118],"a":[27,94],"'blackbox'":[28],"predictor":[29],"cannot":[30],"produce":[31,93],"probabilistic":[33,95],"directly,":[35],"Gaussian":[36],"process":[37],"(GP)":[38],"appears":[40],"to":[41],"be":[42,67],"an":[43,49],"effective":[44],"solution.":[45],"This":[46],"paper":[47],"proposes":[48],"additive":[50,102],"GP":[51,103],"short-term":[55],"load":[57],"prediction,":[58],"which":[60,91],"characteristics":[62],"of":[63],"each":[64],"feature":[65],"can":[66,92,105],"encoded":[68],"kernel.":[71],"For":[72],"comparison,":[73],"we":[74],"survey":[75],"literature":[77],"construct":[79],"two":[80],"deep":[81,87,107],"models,":[83,109],"quantile":[84],"ensemble":[86],"neural":[88],"networks":[89],"(NNs),":[90],"prediction.":[96],"The":[97],"results":[98],"show":[99],"proposed":[101],"outperform":[106],"with":[110],"optimal":[112],"kernel":[113],"selection":[114],"features":[116],"such":[117],"weather-related":[119],"variables.":[120]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3175643212","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2025-03-28T09:30:20.407265","created_date":"2021-07-05"}