{"id":"https://openalex.org/W3167043122","doi":"https://doi.org/10.1145/3442442.3453147","title":"A Feature Analysis Tool for Batch RL Datasets","display_name":"A Feature Analysis Tool for Batch RL Datasets","publication_year":2021,"publication_date":"2021-04-19","ids":{"openalex":"https://openalex.org/W3167043122","doi":"https://doi.org/10.1145/3442442.3453147","mag":"3167043122"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3442442.3453147","pdf_url":null,"source":{"id":"https://openalex.org/S4306506650","display_name":"Companion Proceedings of the The Web Conference 2018","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5023357082","display_name":"Ruiyang Xu","orcid":"https://orcid.org/0000-0002-4973-8458"},"institutions":[{"id":"https://openalex.org/I87182695","display_name":"Universidad del Noreste","ror":"https://ror.org/02ahky613","country_code":"MX","type":"education","lineage":["https://openalex.org/I87182695"]}],"countries":["MX"],"is_corresponding":false,"raw_author_name":"Ruiyang Xu","raw_affiliation_strings":["Northeastern University"],"affiliations":[{"raw_affiliation_string":"Northeastern University","institution_ids":["https://openalex.org/I87182695"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5010176677","display_name":"Zhengxing Chen","orcid":"https://orcid.org/0000-0003-0252-6754"},"institutions":[{"id":"https://openalex.org/I2252078561","display_name":"Meta (Israel)","ror":"https://ror.org/02388em19","country_code":"IL","type":"company","lineage":["https://openalex.org/I2252078561","https://openalex.org/I4210114444"]}],"countries":["IL"],"is_corresponding":false,"raw_author_name":"Zhengxing Chen","raw_affiliation_strings":["Facebook"],"affiliations":[{"raw_affiliation_string":"Facebook","institution_ids":["https://openalex.org/I2252078561"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":57},"biblio":{"volume":null,"issue":null,"first_page":"114","last_page":"122"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12423","display_name":"Software Reliability and Analysis Research","score":0.9704,"subfield":{"id":"https://openalex.org/subfields/1712","display_name":"Software"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12423","display_name":"Software Reliability and Analysis Research","score":0.9704,"subfield":{"id":"https://openalex.org/subfields/1712","display_name":"Software"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":0.9631,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9584,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5833023}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7817899},{"id":"https://openalex.org/C173801870","wikidata":"https://www.wikidata.org/wiki/Q201413","display_name":"Heuristic","level":2,"score":0.64301234},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.6188843},{"id":"https://openalex.org/C112972136","wikidata":"https://www.wikidata.org/wiki/Q7595718","display_name":"Stability (learning theory)","level":2,"score":0.61731595},{"id":"https://openalex.org/C106189395","wikidata":"https://www.wikidata.org/wiki/Q176789","display_name":"Markov decision process","level":3,"score":0.6089745},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5833023},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54175663},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.48803774},{"id":"https://openalex.org/C2777303404","wikidata":"https://www.wikidata.org/wiki/Q759757","display_name":"Convergence (economics)","level":2,"score":0.47744685},{"id":"https://openalex.org/C159886148","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov process","level":2,"score":0.46921292},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.43563},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35529548},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.091246665},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C50522688","wikidata":"https://www.wikidata.org/wiki/Q189833","display_name":"Economic growth","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3442442.3453147","pdf_url":null,"source":{"id":"https://openalex.org/S4306506650","display_name":"Companion Proceedings of the The Web Conference 2018","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.77,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1491843047","https://openalex.org/W1515851193","https://openalex.org/W1579853615","https://openalex.org/W1595634327","https://openalex.org/W1980035368","https://openalex.org/W2049910836","https://openalex.org/W2158796564","https://openalex.org/W2785389871","https://openalex.org/W2890208753","https://openalex.org/W2892230114","https://openalex.org/W2947150733","https://openalex.org/W2953299687","https://openalex.org/W2953708620","https://openalex.org/W2963882293","https://openalex.org/W2971262355","https://openalex.org/W2996117162","https://openalex.org/W3016525976","https://openalex.org/W3025606523","https://openalex.org/W3033478119","https://openalex.org/W4388759515"],"related_works":["https://openalex.org/W4400868993","https://openalex.org/W3168977894","https://openalex.org/W3096874164","https://openalex.org/W2937181779","https://openalex.org/W2386410636","https://openalex.org/W2357975469","https://openalex.org/W2341346307","https://openalex.org/W2145363145","https://openalex.org/W1985560493","https://openalex.org/W1626977535"],"abstract_inverted_index":{"Batch":[0],"RL":[1,40,116,137],"is":[2,20,54,74,118],"concerned":[3],"about":[4],"learning":[5,35],"a":[6,10,48,61,71,78,119,130],"decision":[7],"policy":[8],"from":[9],"given":[11,72],"dataset":[12,73],"without":[13],"interacting":[14],"with":[15],"the":[16,43],"environment.":[17],"Although":[18],"research":[19],"actively":[21],"conducted":[22],"on":[23,114],"learning-related":[24],"issues":[25],"(e.g.,":[26],"convergence":[27],"speed,":[28],"stability,":[29],"and":[30,56,122],"safety),":[31],"empirical":[32],"challenges":[33],"before":[34],"are":[36],"largely":[37],"ignored.":[38],"Many":[39],"practitioners":[41,135],"face":[42],"challenge":[44],"of":[45,104],"determining":[46],"whether":[47,66],"designed":[49,69],"Markov":[50],"Decision":[51],"Process":[52],"(MDP)":[53],"valid":[55],"meaningful.":[57],"This":[58],"study":[59],"proposes":[60],"model-based":[62],"method":[63,85],"to":[64,133],"check":[65],"an":[67],"MDP":[68],"for":[70],"well":[75,89],"formulated":[76],"through":[77],"heuristic-based":[79],"feature":[80],"analysis.":[81],"We":[82],"tested":[83],"our":[84,98,126],"in":[86],"constructed":[87],"as":[88,90,108,129],"more":[91,138],"realistic":[92],"environments.":[93],"Our":[94],"results":[95],"show":[96],"that":[97,125],"approach":[99],"can":[100],"identify":[101],"potential":[102],"problems":[103],"data.":[105],"As":[106],"far":[107],"we":[109,123],"know,":[110],"performing":[111],"validity":[112],"analysis":[113],"batch":[115],"data":[117],"novel":[120],"direction,":[121],"envision":[124],"tool":[127],"serves":[128],"motivational":[131],"example":[132],"help":[134],"apply":[136],"easily.":[139]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3167043122","counts_by_year":[],"updated_date":"2024-12-30T10:31:10.263963","created_date":"2021-06-22"}