{"id":"https://openalex.org/W3115781961","doi":"https://doi.org/10.1145/3430984.3431029","title":"Aided Selection of Sampling Methods for Imbalanced Data Classification","display_name":"Aided Selection of Sampling Methods for Imbalanced Data Classification","publication_year":2020,"publication_date":"2020-12-28","ids":{"openalex":"https://openalex.org/W3115781961","doi":"https://doi.org/10.1145/3430984.3431029","mag":"3115781961"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3430984.3431029","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5090274328","display_name":"Deep Sahni","orcid":null},"institutions":[{"id":"https://openalex.org/I24676775","display_name":"Indian Institute of Technology Madras","ror":"https://ror.org/03v0r5n49","country_code":"IN","type":"facility","lineage":["https://openalex.org/I24676775"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Deep Sahni","raw_affiliation_strings":["Department of Ocean Engineering IIT Madras, India"],"affiliations":[{"raw_affiliation_string":"Department of Ocean Engineering IIT Madras, India","institution_ids":["https://openalex.org/I24676775"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086141868","display_name":"Satya Jayadev Pappu","orcid":"https://orcid.org/0000-0003-0936-4620"},"institutions":[{"id":"https://openalex.org/I4210151956","display_name":"Robert Bosch (India)","ror":"https://ror.org/04my8ty22","country_code":"IN","type":"company","lineage":["https://openalex.org/I4210151956","https://openalex.org/I889804353"]},{"id":"https://openalex.org/I24676775","display_name":"Indian Institute of Technology Madras","ror":"https://ror.org/03v0r5n49","country_code":"IN","type":"facility","lineage":["https://openalex.org/I24676775"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Satya Jayadev Pappu","raw_affiliation_strings":["Department of Electrical Engineering Robert Bosch Centre for Data Science and AI (RBCDSAI) IIT Madras, India"],"affiliations":[{"raw_affiliation_string":"Department of Electrical Engineering Robert Bosch Centre for Data Science and AI (RBCDSAI) IIT Madras, India","institution_ids":["https://openalex.org/I4210151956","https://openalex.org/I24676775"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101847228","display_name":"Nirav Bhatt","orcid":"https://orcid.org/0000-0003-0928-6028"},"institutions":[{"id":"https://openalex.org/I4210151956","display_name":"Robert Bosch (India)","ror":"https://ror.org/04my8ty22","country_code":"IN","type":"company","lineage":["https://openalex.org/I4210151956","https://openalex.org/I889804353"]},{"id":"https://openalex.org/I24676775","display_name":"Indian Institute of Technology Madras","ror":"https://ror.org/03v0r5n49","country_code":"IN","type":"facility","lineage":["https://openalex.org/I24676775"]}],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Nirav Bhatt","raw_affiliation_strings":["Department of Biotechnology Robert Bosch Centre for Data Science and AI (RBCDSAI) IIT Madras, India"],"affiliations":[{"raw_affiliation_string":"Department of Biotechnology Robert Bosch Centre for Data Science and AI (RBCDSAI) IIT Madras, India","institution_ids":["https://openalex.org/I4210151956","https://openalex.org/I24676775"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.595,"has_fulltext":false,"cited_by_count":5,"citation_normalized_percentile":{"value":0.630057,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"198","last_page":"202"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13429","display_name":"Electricity Theft Detection Techniques","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9707,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.41343692}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.786368},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.72425133},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.5740945},{"id":"https://openalex.org/C140779682","wikidata":"https://www.wikidata.org/wiki/Q210868","display_name":"Sampling (signal processing)","level":3,"score":0.56539387},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5425802},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5285676},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.41343692},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4091219},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.0},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3430984.3431029","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1559808786","https://openalex.org/W1576442155","https://openalex.org/W1591261915","https://openalex.org/W1595498733","https://openalex.org/W1976526581","https://openalex.org/W1993220166","https://openalex.org/W1994410331","https://openalex.org/W2022477494","https://openalex.org/W2053724458","https://openalex.org/W2081697244","https://openalex.org/W2104933073","https://openalex.org/W2107686700","https://openalex.org/W2118978333","https://openalex.org/W2125877832","https://openalex.org/W2128965734","https://openalex.org/W2132791018","https://openalex.org/W2137029138","https://openalex.org/W2140187489","https://openalex.org/W2148143831","https://openalex.org/W2157686535","https://openalex.org/W2163667253","https://openalex.org/W2164330572","https://openalex.org/W2182722412","https://openalex.org/W2297432279","https://openalex.org/W2521200999","https://openalex.org/W26514150","https://openalex.org/W283699847","https://openalex.org/W2896236534","https://openalex.org/W2997591727","https://openalex.org/W3146003712","https://openalex.org/W3155649056","https://openalex.org/W4235456164","https://openalex.org/W4298266977","https://openalex.org/W85350352"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W915438175","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2121910908","https://openalex.org/W2086519370","https://openalex.org/W2028665553"],"abstract_inverted_index":{"Building":[0,60],"an":[1,130],"effective":[2],"classifier":[3,14,154,167],"for":[4,53,62,150,155],"imbalanced":[5,36],"data":[6],"is":[7,45,50,75,127,160],"a":[8,83,87,95,144,152,156],"challenging":[9],"task":[10],"as":[11,186,188],"most":[12],"of":[13,19,56,97,103,112,118,124,136],"work":[15,126],"on":[16,115,162],"the":[17,35,64,69,101,110,116,134,182],"assumption":[18],"balanced":[20],"data.":[21,104],"Therefore,":[22],"several":[23],"sampling":[24,39,65,92,119,140],"methods":[25,40,66,93,141],"have":[26],"been":[27],"devised":[28],"to":[29,85,128,147,180],"bridge":[30],"this":[31,79,125,174],"gap":[32],"by":[33],"re-sampling":[34],"datasets.":[37,191],"Although":[38],"are":[41,178],"in":[42],"abundance,":[43],"there":[44],"no":[46],"single":[47],"method":[48],"that":[49,99,132],"best":[51],"suitable":[52,153],"all":[54,63],"kinds":[55],"datasets":[57,90,170],"and":[58,67,91,169],"applications.":[59],"classifiers":[61],"comparing":[68],"results":[70],"using":[71,184],"appropriate":[72],"performance":[73,168],"metrics":[74],"computationally":[76],"inefficient.":[77],"In":[78,173],"work,":[80,175],"we":[81,106],"propose":[82],"framework":[84,183],"find":[86],"relation":[88],"between":[89,166],"via":[94],"set":[96],"meta-features":[98],"characterizes":[100],"distribution":[102],"Also,":[105],"take":[107],"into":[108],"account":[109],"effect":[111],"probability":[113,145],"threshold":[114,146],"choice":[117],"methods.":[120],"The":[121],"main":[122],"objective":[123],"develop":[129],"approach":[131],"aids":[133],"selection":[135],"one":[137],"or":[138],"more":[139],"together":[142],"with":[143],"be":[148],"used":[149],"building":[151],"given":[157],"dataset.":[158],"It":[159],"based":[161],"mapping":[163],"functions":[164],"learned":[165],"after":[171],"re-sampling.":[172],"extensive":[176],"experiments":[177],"performed":[179],"validate":[181],"synthetic":[185],"well":[187],"KEEL":[189],"benchmark":[190]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3115781961","counts_by_year":[{"year":2023,"cited_by_count":4},{"year":2021,"cited_by_count":1}],"updated_date":"2024-12-16T23:22:47.732119","created_date":"2021-01-05"}