{"id":"https://openalex.org/W3081232010","doi":"https://doi.org/10.1145/3394486.3403357","title":"Meta-Learning for Query Conceptualization at Web Scale","display_name":"Meta-Learning for Query Conceptualization at Web Scale","publication_year":2020,"publication_date":"2020-08-20","ids":{"openalex":"https://openalex.org/W3081232010","doi":"https://doi.org/10.1145/3394486.3403357","mag":"3081232010"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3394486.3403357","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103231191","display_name":"Fred X. Han","orcid":"https://orcid.org/0000-0001-9379-2147"},"institutions":[{"id":"https://openalex.org/I154425047","display_name":"University of Alberta","ror":"https://ror.org/0160cpw27","country_code":"CA","type":"education","lineage":["https://openalex.org/I154425047"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Fred X. Han","raw_affiliation_strings":["University of Alberta, Edmonton, AB, Canada"],"affiliations":[{"raw_affiliation_string":"University of Alberta, Edmonton, AB, Canada","institution_ids":["https://openalex.org/I154425047"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032424832","display_name":"Di Niu","orcid":"https://orcid.org/0000-0002-5250-7327"},"institutions":[{"id":"https://openalex.org/I154425047","display_name":"University of Alberta","ror":"https://ror.org/0160cpw27","country_code":"CA","type":"education","lineage":["https://openalex.org/I154425047"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Di Niu","raw_affiliation_strings":["University of Alberta, Edmonton, AB, Canada"],"affiliations":[{"raw_affiliation_string":"University of Alberta, Edmonton, AB, Canada","institution_ids":["https://openalex.org/I154425047"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062624991","display_name":"Haolan Chen","orcid":"https://orcid.org/0009-0004-8226-9608"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haolan Chen","raw_affiliation_strings":["Tencent, ShenZhen, China"],"affiliations":[{"raw_affiliation_string":"Tencent, ShenZhen, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018635864","display_name":"Weidong Guo","orcid":"https://orcid.org/0000-0002-3952-3541"},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Weidong Guo","raw_affiliation_strings":["Tencent, BeiJing, China"],"affiliations":[{"raw_affiliation_string":"Tencent, BeiJing, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011818141","display_name":"Shengli Yan","orcid":null},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shengli Yan","raw_affiliation_strings":["Tencent, ShenZhen, China"],"affiliations":[{"raw_affiliation_string":"Tencent, ShenZhen, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5051589170","display_name":"Bowei Long","orcid":null},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bowei Long","raw_affiliation_strings":["Tencent, ShenZhen, China"],"affiliations":[{"raw_affiliation_string":"Tencent, ShenZhen, China","institution_ids":["https://openalex.org/I2250653659"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.554,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.625983,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"3064","last_page":"3073"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/abstraction","display_name":"Abstraction","score":0.49873734}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8810484},{"id":"https://openalex.org/C118689300","wikidata":"https://www.wikidata.org/wiki/Q7978614","display_name":"Web query classification","level":4,"score":0.7812128},{"id":"https://openalex.org/C164120249","wikidata":"https://www.wikidata.org/wiki/Q995982","display_name":"Web search query","level":3,"score":0.73946816},{"id":"https://openalex.org/C90734943","wikidata":"https://www.wikidata.org/wiki/Q17008777","display_name":"Conceptualization","level":2,"score":0.69560546},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.6151829},{"id":"https://openalex.org/C99016210","wikidata":"https://www.wikidata.org/wiki/Q5488129","display_name":"Query expansion","level":2,"score":0.5782119},{"id":"https://openalex.org/C192028432","wikidata":"https://www.wikidata.org/wiki/Q845739","display_name":"Query language","level":2,"score":0.5552221},{"id":"https://openalex.org/C192939062","wikidata":"https://www.wikidata.org/wiki/Q104840822","display_name":"Sargable","level":4,"score":0.5489734},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.5138312},{"id":"https://openalex.org/C124304363","wikidata":"https://www.wikidata.org/wiki/Q673661","display_name":"Abstraction","level":2,"score":0.49873734},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.458518},{"id":"https://openalex.org/C157692150","wikidata":"https://www.wikidata.org/wiki/Q2919848","display_name":"Query optimization","level":2,"score":0.43621156},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.4100451},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.3049441},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3013928},{"id":"https://openalex.org/C97854310","wikidata":"https://www.wikidata.org/wiki/Q19541","display_name":"Search engine","level":2,"score":0.18079957},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3394486.3403357","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":36,"referenced_works":["https://openalex.org/W1491611863","https://openalex.org/W1598377843","https://openalex.org/W1924770834","https://openalex.org/W2018159142","https://openalex.org/W2022166150","https://openalex.org/W2051101123","https://openalex.org/W2086751477","https://openalex.org/W2089217417","https://openalex.org/W2095705004","https://openalex.org/W2107334351","https://openalex.org/W2117831564","https://openalex.org/W2118206599","https://openalex.org/W2120641257","https://openalex.org/W2123442489","https://openalex.org/W2138605095","https://openalex.org/W2140804329","https://openalex.org/W2167547465","https://openalex.org/W2169498276","https://openalex.org/W2252137719","https://openalex.org/W2533180076","https://openalex.org/W2568082647","https://openalex.org/W2601450892","https://openalex.org/W2736989307","https://openalex.org/W2753160622","https://openalex.org/W2892181857","https://openalex.org/W2913710968","https://openalex.org/W2949917295","https://openalex.org/W2952709651","https://openalex.org/W2963341924","https://openalex.org/W2963403868","https://openalex.org/W2963775850","https://openalex.org/W2964105864","https://openalex.org/W3091905774","https://openalex.org/W3100195825","https://openalex.org/W3101817723","https://openalex.org/W4300766358"],"related_works":["https://openalex.org/W3125756434","https://openalex.org/W2572349046","https://openalex.org/W2538384344","https://openalex.org/W2392799717","https://openalex.org/W2146885082","https://openalex.org/W2124814993","https://openalex.org/W2113390685","https://openalex.org/W2096359267","https://openalex.org/W2026738364","https://openalex.org/W1981131819"],"abstract_inverted_index":{"Concepts":[0],"naturally":[1],"constitute":[2],"an":[3,255],"abstraction":[4,28],"for":[5,58,81,150],"fine-grained":[6],"entities":[7],"and":[8,18,33,88,120,128,232,268,286],"knowledge":[9],"in":[10,228],"the":[11,34,44,53,78,91,122,125,131,145,155,163,173,183,224,234,260,273],"open":[12],"domain.":[13],"They":[14],"enable":[15],"search":[16,31,61,79,198],"engines":[17],"recommendation":[19],"systems":[20],"to":[21,51,75,101,117],"enhance":[22],"user":[23,35],"experience":[24],"by":[25],"discovering":[26],"high-level":[27],"of":[29,46,67,124,223,251,275,281],"a":[30,64,72,85,111,135,151,167,197,212,240,249,279],"query":[32,47,62,83,127,235],"intent":[36],"behind":[37],"it.":[38],"In":[39],"this":[40],"paper,":[41],"we":[42,165,209],"study":[43],"problem":[45],"conceptualization,":[48],"which":[49,98,177],"is":[50],"find":[52],"most":[54,146],"appropriate":[55,147],"matching":[56,92,104,148],"concepts":[57,93,133,149,156],"any":[59,203],"given":[60,126],"from":[63,196,248],"large":[65,213,241],"pool":[66],"pre-defined":[68],"concepts.":[69,246],"We":[70],"propose":[71],"coarse-to-fine":[73],"approach":[74,277],"first":[76,118],"reduce":[77],"space":[80],"each":[82],"through":[84,134],"shortlisting":[86,107,130],"scheme":[87,108],"then":[89,129],"identify":[90,144],"using":[94,110],"pre-trained":[95,283],"language":[96,284],"models,":[97],"are":[99],"meta-tuned":[100],"our":[102,276],"query-concept":[103],"task.":[105],"Our":[106,186],"involves":[109],"GRU-based":[112],"Relevant":[113],"Words":[114],"Generator":[115],"(RWG)":[116],"expand":[119],"complete":[121],"context":[123],"candidate":[132],"scoring":[136],"mechanism":[137],"based":[138,216,238],"on":[139,182,217,239,259],"word":[140],"overlaps.":[141],"To":[142],"accurately":[143],"query,":[152,164],"even":[153],"when":[154],"may":[157],"have":[158,210,271],"zero":[159],"verbatim":[160],"overlaps":[161],"with":[162,192,243],"meta-fine-tune":[166],"BERT":[168],"pairwise":[169],"text-matching":[170],"model":[171],"under":[172],"Reptile":[174],"meta-learning":[175],"algorithm,":[176],"achieves":[178],"zero-shot":[179],"transfer":[180],"learning":[181],"conceptualization":[184,236],"problem.":[185],"two-stage":[187],"framework":[188],"can":[189],"be":[190],"trained":[191],"data":[193],"completely":[194],"derived":[195],"click":[199,214,225,261],"graph,":[200,262],"without":[201],"requiring":[202],"human":[204,263],"labelling":[205],"efforts.":[206],"For":[207],"evaluation,":[208,264],"constructed":[211],"graph":[215],"more":[218],"than":[219],"$7$":[220],"million":[221],"instances":[222],"history":[226],"recorded":[227],"Tencent":[229],"QQ":[230],"browser":[231],"performed":[233],"task":[237],"ontology":[242],"$159,148$":[244],"unique":[245],"Results":[247],"range":[250],"evaluation":[252,257],"methods,":[253],"including":[254],"offline":[256],"procedure":[258],"online":[265],"A/B":[266],"testing":[267],"case":[269],"studies,":[270],"demonstrated":[272],"superiority":[274],"over":[278],"number":[280],"competitive":[282],"models":[285],"fine-tuned":[287],"neural":[288],"network":[289],"baselines.":[290]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3081232010","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":3}],"updated_date":"2025-01-06T17:04:52.065547","created_date":"2020-09-01"}