{"id":"https://openalex.org/W3080402700","doi":"https://doi.org/10.1145/3394486.3403096","title":"Imputing Various Incomplete Attributes via Distance Likelihood Maximization","display_name":"Imputing Various Incomplete Attributes via Distance Likelihood Maximization","publication_year":2020,"publication_date":"2020-08-20","ids":{"openalex":"https://openalex.org/W3080402700","doi":"https://doi.org/10.1145/3394486.3403096","mag":"3080402700"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3394486.3403096","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5084430029","display_name":"Shaoxu Song","orcid":"https://orcid.org/0000-0002-9503-2755"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shaoxu Song","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100734399","display_name":"Yu Sun","orcid":"https://orcid.org/0009-0007-7398-2972"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yu Sun","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.467,"has_fulltext":false,"cited_by_count":12,"citation_normalized_percentile":{"value":0.999281,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":null,"issue":null,"first_page":"535","last_page":"545"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.9979,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9922,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9875,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.4954065}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6394302},{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.4954065},{"id":"https://openalex.org/C182081679","wikidata":"https://www.wikidata.org/wiki/Q1275153","display_name":"Expectation\u2013maximization algorithm","level":3,"score":0.46646488},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.42152858},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39602643},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.28243482},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.24033329},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.2120159}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3394486.3403096","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1502001434","https://openalex.org/W1519775745","https://openalex.org/W1573646728","https://openalex.org/W1964786778","https://openalex.org/W1978695314","https://openalex.org/W1985258161","https://openalex.org/W2001496424","https://openalex.org/W2055621992","https://openalex.org/W2065000833","https://openalex.org/W2078132546","https://openalex.org/W2089206172","https://openalex.org/W2097415784","https://openalex.org/W2108132403","https://openalex.org/W2120465759","https://openalex.org/W2140190241","https://openalex.org/W2156279557","https://openalex.org/W2161163216","https://openalex.org/W2164187405","https://openalex.org/W2167333415","https://openalex.org/W2167546040","https://openalex.org/W2246162424","https://openalex.org/W2282784388","https://openalex.org/W2401610261","https://openalex.org/W2591700809","https://openalex.org/W2611328865","https://openalex.org/W2748435103","https://openalex.org/W2951565755","https://openalex.org/W2952380632","https://openalex.org/W2994844380","https://openalex.org/W3146259567","https://openalex.org/W4239448463"],"related_works":["https://openalex.org/W4300052837","https://openalex.org/W3121212717","https://openalex.org/W2782478708","https://openalex.org/W2368486525","https://openalex.org/W2160216316","https://openalex.org/W2100028280","https://openalex.org/W1978153144","https://openalex.org/W1976188970","https://openalex.org/W1571522380","https://openalex.org/W102848802"],"abstract_inverted_index":{"Missing":[0],"values":[1,15,116,167],"may":[2],"appear":[3],"in":[4,16,28,73,180],"various":[5,89,104],"attributes.":[6],"By":[7],"\"various\",":[8],"we":[9,53,106],"mean":[10],"(1)":[11,76,132],"different":[12,26],"types":[13,90],"of":[14,37,91,100,114,146,171],"a":[17,29],"tuple,":[18,30],"such":[19,196],"as":[20,197],"numerical":[21],"or":[22,34,40],"categorical,":[23],"and":[24,79,93,121,152,200],"(2)":[25,94,143],"attributes":[27,36,87],"either":[31],"the":[32,47,57,82,86,98,110,124,134,139,148,155,169,172,188,193],"dependent":[33],"determinant":[35],"regression":[38],"models":[39,59],"dependency":[41],"rules.":[42],"Such":[43],"varieties":[44],"unfortunately":[45],"prevent":[46],"imputation":[48,101,135,189],"performing.":[49],"In":[50],"this":[51],"paper,":[52],"propose":[54],"to":[55,117,176],"study":[56],"distance":[58],"that":[60],"predict":[61],"distances":[62,83,113],"between":[63],"tuples":[64],"for":[65],"missing":[66,115,166],"data":[67],"imputation.":[68],"The":[69],"immediate":[70],"benefits":[71],"are":[72],"two":[74],"aspects,":[75],"uniformly":[77],"processing":[78],"collaboratively":[80],"utilizing":[81],"on":[84,103,141],"all":[85],"with":[88,158,164],"values,":[92],"rather":[95],"than":[96],"enumerating":[97],"combinations":[99],"candidates":[102],"attributes,":[105],"can":[107],"directly":[108],"calculate":[109],"most":[111],"likely":[112],"other":[118],"complete":[119],"ones":[120],"thus":[122],"infer":[123],"corresponding":[125],"imputations.":[126],"Our":[127,183],"major":[128],"technical":[129],"highlights":[130],"include":[131],"introducing":[133],"statistically":[136],"explainable":[137],"by":[138],"likelihood":[140,150],"distances,":[142],"proving":[144],"NP-hardness":[145],"finding":[147],"maximum":[149],"imputation,":[151],"(3)":[153],"devising":[154],"approximation":[156],"algorithm":[157],"performance":[159],"guarantees.":[160],"Experiments":[161],"over":[162],"datasets":[163],"real":[165],"demonstrate":[168],"superiority":[170],"proposed":[173],"method":[174],"compared":[175],"11":[177],"existing":[178],"approaches":[179],"5":[181],"categories.":[182],"proposal":[184],"improves":[185],"not":[186],"only":[187],"accuracy":[190],"but":[191],"also":[192],"downstream":[194],"applications":[195],"classification,":[198],"clustering":[199],"record":[201],"matching.":[202]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3080402700","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2}],"updated_date":"2025-01-06T17:16:10.755930","created_date":"2020-09-01"}