{"id":"https://openalex.org/W3099363577","doi":"https://doi.org/10.1145/3394171.3413865","title":"Mesh Guided One-shot Face Reenactment Using Graph Convolutional Networks","display_name":"Mesh Guided One-shot Face Reenactment Using Graph Convolutional Networks","publication_year":2020,"publication_date":"2020-10-12","ids":{"openalex":"https://openalex.org/W3099363577","doi":"https://doi.org/10.1145/3394171.3413865","mag":"3099363577"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3394171.3413865","pdf_url":null,"source":{"id":"https://openalex.org/S4363608757","display_name":"Proceedings of the 30th ACM International Conference on Multimedia","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/2008.07783","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5061710616","display_name":"Yao Guangming","orcid":null},"institutions":[{"id":"https://openalex.org/I4210091137","display_name":"NetEase (China)","ror":"https://ror.org/00fp6fj05","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210091137"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guangming Yao","raw_affiliation_strings":["NetEase Fuxi AI Lab, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"NetEase Fuxi AI Lab, Hangzhou, China","institution_ids":["https://openalex.org/I4210091137"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100638623","display_name":"Yi Yuan","orcid":"https://orcid.org/0000-0003-2507-8181"},"institutions":[{"id":"https://openalex.org/I4210091137","display_name":"NetEase (China)","ror":"https://ror.org/00fp6fj05","country_code":"CN","type":"company","lineage":["https://openalex.org/I4210091137"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yi Yuan","raw_affiliation_strings":["NetEase Fuxi AI Lab, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"NetEase Fuxi AI Lab, Hangzhou, China","institution_ids":["https://openalex.org/I4210091137"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5060286507","display_name":"Tianjia Shao","orcid":"https://orcid.org/0000-0001-5485-3752"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"funder","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Tianjia Shao","raw_affiliation_strings":["Zhejiang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang University, Hangzhou, China","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5027671723","display_name":"Kun Zhou","orcid":"https://orcid.org/0000-0003-4243-6112"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"funder","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kun Zhou","raw_affiliation_strings":["Zhejiang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"Zhejiang University, Hangzhou, China","institution_ids":["https://openalex.org/I76130692"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.118,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":43,"citation_normalized_percentile":{"value":0.999865,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":"1773","last_page":"1781"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11448","display_name":"Face recognition and analysis","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks and Image Synthesis","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11105","display_name":"Advanced Image Processing Techniques","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/optical-flow","display_name":"Optical Flow","score":0.7581259},{"id":"https://openalex.org/keywords/autoencoder","display_name":"Autoencoder","score":0.5752667}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79045784},{"id":"https://openalex.org/C31487907","wikidata":"https://www.wikidata.org/wiki/Q1154597","display_name":"Polygon mesh","level":2,"score":0.7702341},{"id":"https://openalex.org/C155542232","wikidata":"https://www.wikidata.org/wiki/Q736111","display_name":"Optical flow","level":3,"score":0.7581259},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6778796},{"id":"https://openalex.org/C2779304628","wikidata":"https://www.wikidata.org/wiki/Q3503480","display_name":"Face (sociological concept)","level":2,"score":0.64268744},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.6308726},{"id":"https://openalex.org/C101738243","wikidata":"https://www.wikidata.org/wiki/Q786435","display_name":"Autoencoder","level":3,"score":0.5752667},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.5245802},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.49980116},{"id":"https://openalex.org/C118505674","wikidata":"https://www.wikidata.org/wiki/Q42586063","display_name":"Encoder","level":2,"score":0.43838012},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.42146742},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.32015795},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.23100784},{"id":"https://openalex.org/C121684516","wikidata":"https://www.wikidata.org/wiki/Q7600677","display_name":"Computer graphics (images)","level":1,"score":0.19224581},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.14334431},{"id":"https://openalex.org/C36289849","wikidata":"https://www.wikidata.org/wiki/Q34749","display_name":"Social science","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3394171.3413865","pdf_url":null,"source":{"id":"https://openalex.org/S4363608757","display_name":"Proceedings of the 30th ACM International Conference on Multimedia","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2008.07783","pdf_url":"https://arxiv.org/pdf/2008.07783","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.2008.07783","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/2008.07783","pdf_url":"https://arxiv.org/pdf/2008.07783","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.55}],"grants":[],"datasets":[],"versions":["https://openalex.org/W3067169454","https://openalex.org/W3099363577"],"referenced_works_count":67,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1662382123","https://openalex.org/W1682276745","https://openalex.org/W1836465849","https://openalex.org/W2012885984","https://openalex.org/W2017107803","https://openalex.org/W2107037917","https://openalex.org/W2114770744","https://openalex.org/W2133665775","https://openalex.org/W2156387975","https://openalex.org/W2237250383","https://openalex.org/W2265959009","https://openalex.org/W2277958045","https://openalex.org/W2301937176","https://openalex.org/W2325939864","https://openalex.org/W2468907370","https://openalex.org/W2486034530","https://openalex.org/W2502312327","https://openalex.org/W2584229793","https://openalex.org/W2604524889","https://openalex.org/W2604672468","https://openalex.org/W2605701576","https://openalex.org/W2726515241","https://openalex.org/W2736728583","https://openalex.org/W2748448865","https://openalex.org/W2765531092","https://openalex.org/W2769666294","https://openalex.org/W2806833697","https://openalex.org/W2807126412","https://openalex.org/W2883183894","https://openalex.org/W2883221003","https://openalex.org/W2884460600","https://openalex.org/W2893749619","https://openalex.org/W2902266071","https://openalex.org/W2902538436","https://openalex.org/W2949117887","https://openalex.org/W2949194588","https://openalex.org/W2952080583","https://openalex.org/W2952716587","https://openalex.org/W2962793481","https://openalex.org/W2962879692","https://openalex.org/W2963084622","https://openalex.org/W2963168844","https://openalex.org/W2963409406","https://openalex.org/W2963789946","https://openalex.org/W2963800363","https://openalex.org/W2963907666","https://openalex.org/W2964002510","https://openalex.org/W2964015378","https://openalex.org/W2964311892","https://openalex.org/W2964321699","https://openalex.org/W2967294981","https://openalex.org/W2969985801","https://openalex.org/W2970315999","https://openalex.org/W2982058372","https://openalex.org/W2982413914","https://openalex.org/W2990452356","https://openalex.org/W2990752111","https://openalex.org/W2998605827","https://openalex.org/W3008823916","https://openalex.org/W3012403781","https://openalex.org/W3034512702","https://openalex.org/W3034950620","https://openalex.org/W3098918147","https://openalex.org/W4295521014","https://openalex.org/W4385490328","https://openalex.org/W637153065"],"related_works":["https://openalex.org/W4386815338","https://openalex.org/W4297051394","https://openalex.org/W3131327266","https://openalex.org/W3013693939","https://openalex.org/W2803255133","https://openalex.org/W2752972570","https://openalex.org/W2734887215","https://openalex.org/W2566616303","https://openalex.org/W2159052453","https://openalex.org/W2145836866"],"abstract_inverted_index":{"Face":[0],"reenactment":[1],"aims":[2],"to":[3,9,68,120,151,164,170],"animate":[4],"a":[5,10,17,26,47,117,133,140],"source":[6,61,106],"face":[7,51,77,107,113,123],"image":[8,156],"different":[11],"pose":[12,194,208],"and":[13,63,147,193,207,223,230],"expression":[14,206],"provided":[15],"by":[16],"driving":[18,64,84,91,112],"image.":[19],"Existing":[20],"approaches":[21],"are":[22],"either":[23],"designed":[24],"for":[25,49,74,104,196],"specific":[27],"identity,":[28],"or":[29,39],"suffer":[30],"from":[31,144,157,184],"the":[32,37,55,60,70,75,83,89,101,105,109,122,145,148,158,172,180,190,197,210],"identity":[33,86],"preservation":[34],"problem":[35],"in":[36,88,227],"one-shot":[38,50],"few-shot":[40],"scenarios.":[41],"In":[42,93],"this":[43,94],"paper,":[44],"we":[45,80],"introduce":[46],"method":[48,218],"reenactment,":[52],"which":[53,125,188],"uses":[54],"reconstructed":[56,90],"3D":[57,185],"meshes":[58],"(i.e.,":[59],"mesh":[62],"mesh)":[65],"as":[66],"guidance":[67],"learn":[69,121],"optical":[71,154,173,181,198],"flow":[72,155,174,182],"needed":[73],"reenacted":[76,211],"synthesis.":[78],"Technically,":[79],"explicitly":[81],"exclude":[82],"face's":[85],"information":[87,195],"mesh.":[92],"way,":[95],"our":[96,176,217],"network":[97,136],"can":[98,202,219],"focus":[99],"on":[100,209],"motion":[102,118,142,177],"estimation":[103],"without":[108],"interference":[110],"of":[111],"shape.":[114],"We":[115],"propose":[116],"net":[119,178],"motion,":[124],"is":[126,132],"an":[127,153],"asymmetric":[128],"autoencoder.":[129],"The":[130],"encoder":[131],"graph":[134],"convolutional":[135],"(GCN)":[137],"that":[138,216],"learns":[139,179],"latent":[141,159],"vector":[143,160],"meshes,":[146,187],"decoder":[149],"serves":[150],"produce":[152],"with":[161],"CNNs.":[162],"Compared":[163],"previous":[165],"methods":[166,226],"using":[167],"sparse":[168],"keypoints":[169],"guide":[171],"learning,":[175],"directly":[183],"dense":[186],"provide":[189],"detailed":[191],"shape":[192],"flow,":[199],"so":[200],"it":[201],"achieve":[203],"more":[204],"accurate":[205],"face.":[212],"Extensive":[213],"experiments":[214],"show":[215],"generate":[220],"high-quality":[221],"results":[222],"outperforms":[224],"state-of-the-art":[225],"both":[228],"qualitative":[229],"quantitative":[231],"comparisons.":[232]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3099363577","counts_by_year":[{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":13},{"year":2022,"cited_by_count":14},{"year":2021,"cited_by_count":6},{"year":2020,"cited_by_count":1}],"updated_date":"2025-04-18T01:53:24.970915","created_date":"2020-11-23"}