{"id":"https://openalex.org/W3041591271","doi":"https://doi.org/10.1145/3391403.3399531","title":"Online Matching with Stochastic Rewards: Optimal Competitive Ratio via Path Based Formulation","display_name":"Online Matching with Stochastic Rewards: Optimal Competitive Ratio via Path Based Formulation","publication_year":2020,"publication_date":"2020-07-09","ids":{"openalex":"https://openalex.org/W3041591271","doi":"https://doi.org/10.1145/3391403.3399531","mag":"3041591271"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3391403.3399531","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3391403.3399531","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3391403.3399531","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5051109529","display_name":"Vineet Goyal","orcid":"https://orcid.org/0000-0001-6719-3212"},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"funder","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Vineet Goyal","raw_affiliation_strings":["Columbia University, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5055909322","display_name":"Rajan Udwani","orcid":"https://orcid.org/0000-0002-2112-4876"},"institutions":[{"id":"https://openalex.org/I78577930","display_name":"Columbia University","ror":"https://ror.org/00hj8s172","country_code":"US","type":"funder","lineage":["https://openalex.org/I78577930"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Rajan Udwani","raw_affiliation_strings":["Columbia University, New York, NY, USA"],"affiliations":[{"raw_affiliation_string":"Columbia University, New York, NY, USA","institution_ids":["https://openalex.org/I78577930"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.787,"has_fulltext":false,"cited_by_count":19,"citation_normalized_percentile":{"value":0.999828,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":"791","last_page":"791"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12288","display_name":"Optimization and Search Problems","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12288","display_name":"Optimization and Search Problems","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10720","display_name":"Complexity and Algorithms in Graphs","score":0.9851,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9688,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/competitive-analysis","display_name":"Competitive Analysis","score":0.8527986},{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5759605},{"id":"https://openalex.org/keywords/online-algorithm","display_name":"Online algorithm","score":0.56872296}],"concepts":[{"id":"https://openalex.org/C102408133","wikidata":"https://www.wikidata.org/wiki/Q5156350","display_name":"Competitive analysis","level":3,"score":0.8527986},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.70672756},{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.62734675},{"id":"https://openalex.org/C2777735758","wikidata":"https://www.wikidata.org/wiki/Q817765","display_name":"Path (computing)","level":2,"score":0.61325216},{"id":"https://openalex.org/C80899671","wikidata":"https://www.wikidata.org/wiki/Q1304193","display_name":"Vertex (graph theory)","level":3,"score":0.5932487},{"id":"https://openalex.org/C197657726","wikidata":"https://www.wikidata.org/wiki/Q174733","display_name":"Bipartite graph","level":3,"score":0.58904725},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5759605},{"id":"https://openalex.org/C196921405","wikidata":"https://www.wikidata.org/wiki/Q786431","display_name":"Online algorithm","level":2,"score":0.56872296},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.51590884},{"id":"https://openalex.org/C162307627","wikidata":"https://www.wikidata.org/wiki/Q204833","display_name":"Enhanced Data Rates for GSM Evolution","level":2,"score":0.5106626},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.48413882},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4639283},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.46311465},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.45601916},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.33988348},{"id":"https://openalex.org/C77553402","wikidata":"https://www.wikidata.org/wiki/Q13222579","display_name":"Upper and lower bounds","level":2,"score":0.29687262},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.19904345},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.109481096},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.08023688},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3391403.3399531","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3391403.3399531","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1905.12778","pdf_url":"https://arxiv.org/pdf/1905.12778","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3391403.3399531","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3391403.3399531","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"CMMI 1636046"}],"datasets":[],"versions":[],"referenced_works_count":0,"referenced_works":[],"related_works":["https://openalex.org/W4213299358","https://openalex.org/W3115340459","https://openalex.org/W2950803469","https://openalex.org/W2793095688","https://openalex.org/W2583614279","https://openalex.org/W2564742953","https://openalex.org/W2109659895","https://openalex.org/W2004975914","https://openalex.org/W1930615501","https://openalex.org/W1623410360"],"abstract_inverted_index":{"The":[0],"problem":[1,16],"of":[2,11,23,35,52,68,87,96,123,129],"online":[3,13,81],"matching":[4,15],"with":[5,32,83],"stochastic":[6],"rewards":[7],"is":[8,28,74],"a":[9,21,26,58,79,108],"generalization":[10],"the":[12,33,36,49,65,94,113,118,124,127],"bipartite":[14],"where":[17],"each":[18],"edge":[19,54],"has":[20],"probability":[22,34],"success.":[24],"When":[25],"match":[27],"made":[29],"it":[30],"succeeds":[31],"corresponding":[37],"edge.":[38],"Introducing":[39],"this":[40],"model,":[41],"Mehta":[42,102],"and":[43,77],"Panigrahi":[44],"(FOCS":[45],"2012)":[46],"focused":[47],"on":[48],"special":[50],"case":[51,95],"identical":[53,141],"probabilities.":[55,92,142],"Comparing":[56],"against":[57,112],"deterministic":[59],"offline":[60],"LP,":[61],"they":[62],"showed":[63],"that":[64],"Ranking":[66],"algorithm":[67,82,111],"Karp":[69],"et":[70,103],"al.":[71,104],"(STOC":[72],"1990)":[73],"0.534":[75,109],"competitive":[76,110],"proposed":[78],"new":[80],"an":[84],"improved":[85],"guarantee":[86],"0.567":[88],"for":[89,140],"vanishingly":[90,97],"small":[91,98],"For":[93,117],"but":[99],"heterogeneous":[100],"probabilities":[101],"(SODA":[105],"2015),":[106],"gave":[107],"same":[114],"LP":[115],"benchmark.":[116],"more":[119],"general":[120],"vertex-weighted":[121],"version":[122],"problem,":[125],"to":[126],"best":[128],"our":[130],"knowledge,":[131],"no":[132],"results":[133],"being":[134],"1/2":[135],"were":[136],"previously":[137],"known":[138],"even":[139]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3041591271","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":2}],"updated_date":"2025-03-21T04:13:47.940743","created_date":"2020-07-16"}