{"id":"https://openalex.org/W3033262879","doi":"https://doi.org/10.1145/3386164.3390517","title":"Modal Regression Estimation for Heteroscedastic Single-Index Model","display_name":"Modal Regression Estimation for Heteroscedastic Single-Index Model","publication_year":2019,"publication_date":"2019-09-25","ids":{"openalex":"https://openalex.org/W3033262879","doi":"https://doi.org/10.1145/3386164.3390517","mag":"3033262879"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3386164.3390517","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5023408175","display_name":"Waled Khaled","orcid":"https://orcid.org/0000-0002-7382-7186"},"institutions":[{"id":"https://openalex.org/I875646752","display_name":"Damascus University","ror":"https://ror.org/03m098d13","country_code":"SY","type":"education","lineage":["https://openalex.org/I875646752"]},{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"education","lineage":["https://openalex.org/I76569877"]}],"countries":["CN","SY"],"is_corresponding":false,"raw_author_name":"Waled Khaled","raw_affiliation_strings":["School of Mathematics, Southeast University, Nanjing, P. R. China, Department of Applied Statistics, Damascus University, Syria"],"affiliations":[{"raw_affiliation_string":"School of Mathematics, Southeast University, Nanjing, P. R. China, Department of Applied Statistics, Damascus University, Syria","institution_ids":["https://openalex.org/I875646752","https://openalex.org/I76569877"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5014734789","display_name":"Jin\u2010Guan Lin","orcid":"https://orcid.org/0000-0002-2304-1177"},"institutions":[{"id":"https://openalex.org/I206777745","display_name":"Nanjing Audit University","ror":"https://ror.org/04zj2bd87","country_code":"CN","type":"education","lineage":["https://openalex.org/I206777745"]},{"id":"https://openalex.org/I76569877","display_name":"Southeast University","ror":"https://ror.org/04ct4d772","country_code":"CN","type":"education","lineage":["https://openalex.org/I76569877"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jin-guan Lin","raw_affiliation_strings":["School of Mathematics, Southeast University, Nanjing, P. R. China, School of Statistics and Mathematics, Nanjing Audit University, Nanjing, P.R. China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics, Southeast University, Nanjing, P. R. China, School of Statistics and Mathematics, Nanjing Audit University, Nanjing, P.R. China","institution_ids":["https://openalex.org/I206777745","https://openalex.org/I76569877"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"5"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9957,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/single-index-model","display_name":"Single-index model","score":0.57473534},{"id":"https://openalex.org/keywords/censored-regression-model","display_name":"Censored regression model","score":0.4352305}],"concepts":[{"id":"https://openalex.org/C101104100","wikidata":"https://www.wikidata.org/wiki/Q1063540","display_name":"Heteroscedasticity","level":2,"score":0.8336843},{"id":"https://openalex.org/C174287018","wikidata":"https://www.wikidata.org/wiki/Q1669733","display_name":"Single-index model","level":2,"score":0.57473534},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5647671},{"id":"https://openalex.org/C111030470","wikidata":"https://www.wikidata.org/wiki/Q1430460","display_name":"Curse of dimensionality","level":2,"score":0.55392855},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.5132053},{"id":"https://openalex.org/C117251300","wikidata":"https://www.wikidata.org/wiki/Q1849855","display_name":"Parametric statistics","level":2,"score":0.46657193},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.45327863},{"id":"https://openalex.org/C196083921","wikidata":"https://www.wikidata.org/wiki/Q7915758","display_name":"Variance (accounting)","level":2,"score":0.4380437},{"id":"https://openalex.org/C97379794","wikidata":"https://www.wikidata.org/wiki/Q4503892","display_name":"Censored regression model","level":3,"score":0.4352305},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.43075362},{"id":"https://openalex.org/C2777382242","wikidata":"https://www.wikidata.org/wiki/Q6017816","display_name":"Index (typography)","level":2,"score":0.42902213},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.33730096},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.10932991},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0},{"id":"https://openalex.org/C121955636","wikidata":"https://www.wikidata.org/wiki/Q4116214","display_name":"Accounting","level":1,"score":0.0},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3386164.3390517","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1807984730","https://openalex.org/W1978930294","https://openalex.org/W1978930761","https://openalex.org/W1981760120","https://openalex.org/W1984280847","https://openalex.org/W1992674468","https://openalex.org/W2024547771","https://openalex.org/W2065274576","https://openalex.org/W2087335160","https://openalex.org/W2088646207","https://openalex.org/W2088870374","https://openalex.org/W2091615269","https://openalex.org/W2094146877","https://openalex.org/W2110830020","https://openalex.org/W2114777509","https://openalex.org/W2136175429","https://openalex.org/W2171050905","https://openalex.org/W2322382546","https://openalex.org/W2737026006","https://openalex.org/W3102028468","https://openalex.org/W3104722139","https://openalex.org/W4241170827"],"related_works":["https://openalex.org/W4290879003","https://openalex.org/W4214484213","https://openalex.org/W3124121843","https://openalex.org/W3121333031","https://openalex.org/W2386538442","https://openalex.org/W2245260304","https://openalex.org/W2222389934","https://openalex.org/W2138433820","https://openalex.org/W2101639259","https://openalex.org/W2078869916"],"abstract_inverted_index":{"The":[0,76],"single-index":[1,69],"model":[2,7,70],"is":[3,137],"a":[4,59,112,140],"semi-parametric":[5],"regression":[6,66],"that":[8],"avoids":[9],"the":[10,16,26,33,43,68,72,86,92,95,107,118,126,131,134,144],"curse":[11],"of":[12,15,19,25,74,94,133,143],"dimensionality":[13],"because":[14],"linear":[17],"combination":[18],"p-regression":[20],"coefficients":[21],"and":[22,40,61,79],"covariates.":[23],"Most":[24],"works":[27],"in":[28,54,102],"this":[29,55,98],"setting":[30],"done":[31],"for":[32,67,125],"homogenous":[34],"single":[35],"index":[36],"models":[37],"are":[38,82,109],"limited":[39],"based":[41],"on":[42],"minimum":[44],"average":[45],"conditional":[46],"variance":[47],"estimation":[48,87],"(MAVE).":[49],"To":[50],"overcome":[51],"these":[52],"drawbacks,":[53],"paper,":[56],"we":[57],"provide":[58],"robust":[60],"efficient":[62],"estimate":[63],"with":[64],"modal":[65],"under":[71],"existence":[73],"heteroscedasticity.":[75],"EM":[77],"algorithm":[78],"bandwidth":[80],"selection":[81],"employed":[83],"to":[84],"prepare":[85],"method.":[88],"Simulation":[89],"studies":[90],"demonstrate":[91],"performance":[93],"proposed":[96,135],"estimation;":[97],"method":[99,136],"outperforms":[100],"MAVE":[101,124],"various":[103],"situations":[104],"even":[105],"if":[106],"errors":[108],"generated":[110],"from":[111],"heavy-tailed":[113],"distribution":[114],"while":[115],"it":[116],"achieves":[117],"same":[119],"efficiency":[120],"as":[121,123],"well":[122],"normally":[127],"distributed":[128],"errors.":[129],"Finally,":[130],"application":[132],"illustrated":[138],"by":[139],"real":[141],"example":[142],"heteroscedastic":[145],"model.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3033262879","counts_by_year":[],"updated_date":"2024-12-07T09:47:56.593397","created_date":"2020-06-12"}