{"id":"https://openalex.org/W3034084196","doi":"https://doi.org/10.1145/3386164.3389092","title":"Towards Preprocessing Guidelines for Neural Network Embedding of Customer Behavior in Digital Retail","display_name":"Towards Preprocessing Guidelines for Neural Network Embedding of Customer Behavior in Digital Retail","publication_year":2019,"publication_date":"2019-09-25","ids":{"openalex":"https://openalex.org/W3034084196","doi":"https://doi.org/10.1145/3386164.3389092","mag":"3034084196"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3386164.3389092","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://doras.dcu.ie/24645/1/Towards%20Preprocessing%20Guidelines%20for%20Neural%20Network%20Embedding%20of%20Customer%20Behavior%20in%20Digital%20Retail_Post_Print.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5067629094","display_name":"Douglas Cirqueira","orcid":"https://orcid.org/0000-0002-1283-0453"},"institutions":[{"id":"https://openalex.org/I42934936","display_name":"Dublin City University","ror":"https://ror.org/04a1a1e81","country_code":"IE","type":"education","lineage":["https://openalex.org/I42934936"]}],"countries":["IE"],"is_corresponding":false,"raw_author_name":"Douglas Cirqueira","raw_affiliation_strings":["School of Computing, Dublin City University, Dublin, Ireland"],"affiliations":[{"raw_affiliation_string":"School of Computing, Dublin City University, Dublin, Ireland","institution_ids":["https://openalex.org/I42934936"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038237158","display_name":"Markus Helfert","orcid":"https://orcid.org/0000-0001-6546-6408"},"institutions":[{"id":"https://openalex.org/I157286207","display_name":"National University of Ireland, Maynooth","ror":"https://ror.org/048nfjm95","country_code":"IE","type":"education","lineage":["https://openalex.org/I157286207"]}],"countries":["IE"],"is_corresponding":false,"raw_author_name":"Markus Helfert","raw_affiliation_strings":["School of Business, Lero - The Irish Software Research Centre, Maynooth University, Maynooth, Ireland"],"affiliations":[{"raw_affiliation_string":"School of Business, Lero - The Irish Software Research Centre, Maynooth University, Maynooth, Ireland","institution_ids":["https://openalex.org/I157286207"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5060543167","display_name":"Marija Bezbradica","orcid":"https://orcid.org/0000-0001-9366-5113"},"institutions":[{"id":"https://openalex.org/I42934936","display_name":"Dublin City University","ror":"https://ror.org/04a1a1e81","country_code":"IE","type":"education","lineage":["https://openalex.org/I42934936"]}],"countries":["IE"],"is_corresponding":false,"raw_author_name":"Marija Bezbradica","raw_affiliation_strings":["School of Computing, Dublin City University, Dublin, Ireland"],"affiliations":[{"raw_affiliation_string":"School of Computing, Dublin City University, Dublin, Ireland","institution_ids":["https://openalex.org/I42934936"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.121,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":7,"citation_normalized_percentile":{"value":0.851331,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12384","display_name":"Customer churn and segmentation","score":0.9924,"subfield":{"id":"https://openalex.org/subfields/1406","display_name":"Marketing"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12384","display_name":"Customer churn and segmentation","score":0.9924,"subfield":{"id":"https://openalex.org/subfields/1406","display_name":"Marketing"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11536","display_name":"Consumer Retail Behavior Studies","score":0.9806,"subfield":{"id":"https://openalex.org/subfields/1406","display_name":"Marketing"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Stock Market Forecasting Methods","score":0.9717,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/data-pre-processing","display_name":"Data pre-processing","score":0.46065164}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.792356},{"id":"https://openalex.org/C75949130","wikidata":"https://www.wikidata.org/wiki/Q848010","display_name":"Database transaction","level":2,"score":0.6617391},{"id":"https://openalex.org/C34736171","wikidata":"https://www.wikidata.org/wiki/Q918333","display_name":"Preprocessor","level":2,"score":0.6552561},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.61970615},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.6079471},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.57262427},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.55822986},{"id":"https://openalex.org/C127722929","wikidata":"https://www.wikidata.org/wiki/Q7833714","display_name":"Transaction data","level":3,"score":0.53391844},{"id":"https://openalex.org/C10551718","wikidata":"https://www.wikidata.org/wiki/Q5227332","display_name":"Data pre-processing","level":2,"score":0.46065164},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.4263419},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.39541572},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.37871575},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.35331053},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.2245735},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3386164.3389092","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://doras.dcu.ie/24645/","pdf_url":"https://doras.dcu.ie/24645/1/Towards%20Preprocessing%20Guidelines%20for%20Neural%20Network%20Embedding%20of%20Customer%20Behavior%20in%20Digital%20Retail_Post_Print.pdf","source":{"id":"https://openalex.org/S4306401512","display_name":"Dublin City University Open Access Institutional Repository (Dublin City University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I42934936","host_organization_name":"Dublin City University","host_organization_lineage":["https://openalex.org/I42934936"],"host_organization_lineage_names":["Dublin City University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"acceptedVersion","is_accepted":true,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://doras.dcu.ie/24645/","pdf_url":"https://doras.dcu.ie/24645/1/Towards%20Preprocessing%20Guidelines%20for%20Neural%20Network%20Embedding%20of%20Customer%20Behavior%20in%20Digital%20Retail_Post_Print.pdf","source":{"id":"https://openalex.org/S4306401512","display_name":"Dublin City University Open Access Institutional Repository (Dublin City University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I42934936","host_organization_name":"Dublin City University","host_organization_lineage":["https://openalex.org/I42934936"],"host_organization_lineage_names":["Dublin City University"],"type":"repository"},"license":"cc-by-nc-sa","license_id":"https://openalex.org/licenses/cc-by-nc-sa","version":"acceptedVersion","is_accepted":true,"is_published":false},"sustainable_development_goals":[{"score":0.52,"display_name":"Peace, justice, and strong institutions","id":"https://metadata.un.org/sdg/16"}],"grants":[{"funder":"https://openalex.org/F4320335254","funder_display_name":"Horizon 2020","award_id":"765395"}],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1001370459","https://openalex.org/W2064675550","https://openalex.org/W2095705004","https://openalex.org/W2153579005","https://openalex.org/W2552383788","https://openalex.org/W2557283755","https://openalex.org/W2558273924","https://openalex.org/W2599766447","https://openalex.org/W2748545996","https://openalex.org/W2786577118","https://openalex.org/W2913153410"],"related_works":["https://openalex.org/W4248881655","https://openalex.org/W3092506759","https://openalex.org/W3010890513","https://openalex.org/W2989589039","https://openalex.org/W2989490741","https://openalex.org/W2482165163","https://openalex.org/W2390914021","https://openalex.org/W2389417819","https://openalex.org/W2367545121","https://openalex.org/W138569904"],"abstract_inverted_index":{"Shopping":[0],"transactions":[1],"in":[2,34,152],"digital":[3],"retailing":[4],"platforms":[5],"enable":[6],"retailers":[7],"to":[8,84,99],"understand":[9],"customers'":[10],"needs":[11],"for":[12,43,62,77,124,140,149],"providing":[13],"personalized":[14],"experiences.":[15],"Researchers":[16],"started":[17],"modeling":[18,80],"transaction":[19,82],"data":[20,83],"through":[21,104],"neural":[22,60,86],"network":[23,87],"embedding,":[24],"which":[25],"enables":[26],"unsupervised":[27],"learning":[28],"of":[29,59,75,107,117,156],"contextual":[30],"similarities":[31],"between":[32],"attributes":[33],"shopping":[35,159],"transactions.":[36,160],"However,":[37],"every":[38],"study":[39],"brings":[40,66],"different":[41],"approaches":[42],"embedding":[44,61],"customer's":[45],"transactions,":[46],"and":[47,65,79,121,127,138,146],"clear":[48],"preprocessing":[49,78],"guidelines":[50,76,102],"are":[51],"missing.":[52],"This":[53],"paper":[54],"reviews":[55],"the":[56,101,105,142],"recent":[57],"literature":[58],"customer":[63,118],"behavior":[64,109,119],"three":[67],"main":[68],"contributions.":[69],"First,":[70],"we":[71,112],"provide":[72],"a":[73,93,114,153],"set":[74],"consumer":[81],"learn":[85],"embeddings.":[88],"Second,":[89],"it":[90],"is":[91],"introduced":[92],"multi-task":[94],"Long":[95],"Short-Term":[96],"Memory":[97],"Network":[98],"evaluate":[100],"proposed":[103],"task":[106],"purchase":[108,125],"prediction.":[110],"Third,":[111],"present":[113],"multi-contextual":[115],"visualization":[116],"embeddings,":[120],"its":[122],"usefulness":[123],"prediction":[126],"fraud":[128],"detection":[129],"applications.":[130],"Results":[131],"achieved":[132],"illustrate":[133],"accuracies":[134],"above":[135],"40%,":[136],"60%,":[137],"80%":[139],"predicting":[141],"next":[143],"days,":[144],"hours,":[145],"products":[147],"purchased":[148],"some":[150],"customers":[151],"dataset":[154],"composed":[155],"online":[157],"grocery":[158]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3034084196","counts_by_year":[{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":2}],"updated_date":"2025-01-06T23:32:41.546242","created_date":"2020-06-12"}