{"id":"https://openalex.org/W3033225421","doi":"https://doi.org/10.1145/3386164.3389086","title":"Real-time Head Detection for Automated Passenger Counting in Embedded Systems","display_name":"Real-time Head Detection for Automated Passenger Counting in Embedded Systems","publication_year":2019,"publication_date":"2019-09-25","ids":{"openalex":"https://openalex.org/W3033225421","doi":"https://doi.org/10.1145/3386164.3389086","mag":"3033225421"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3386164.3389086","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5004082294","display_name":"Hyunduk Kim","orcid":"https://orcid.org/0000-0002-3901-1327"},"institutions":[{"id":"https://openalex.org/I193352282","display_name":"Daegu Gyeongbuk Institute of Science and Technology","ror":"https://ror.org/03frjya69","country_code":"KR","type":"education","lineage":["https://openalex.org/I193352282"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Hyunduk Kim","raw_affiliation_strings":["Convergence Research Center for Future Automotive Technology, DGIST, Daegu, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Convergence Research Center for Future Automotive Technology, DGIST, Daegu, Republic of Korea","institution_ids":["https://openalex.org/I193352282"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100653535","display_name":"Sang\u2010Heon Lee","orcid":"https://orcid.org/0000-0002-3655-7981"},"institutions":[{"id":"https://openalex.org/I193352282","display_name":"Daegu Gyeongbuk Institute of Science and Technology","ror":"https://ror.org/03frjya69","country_code":"KR","type":"education","lineage":["https://openalex.org/I193352282"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Sang-Heon Lee","raw_affiliation_strings":["Convergence Research Center for Future Automotive Technology, DGIST, Daegu, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Convergence Research Center for Future Automotive Technology, DGIST, Daegu, Republic of Korea","institution_ids":["https://openalex.org/I193352282"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024679227","display_name":"Myoung\u2010Kyu Sohn","orcid":null},"institutions":[{"id":"https://openalex.org/I193352282","display_name":"Daegu Gyeongbuk Institute of Science and Technology","ror":"https://ror.org/03frjya69","country_code":"KR","type":"education","lineage":["https://openalex.org/I193352282"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Myoung-Kyu Sohn","raw_affiliation_strings":["Convergence Research Center for Future Automotive Technology, DGIST, Daegu, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Convergence Research Center for Future Automotive Technology, DGIST, Daegu, Republic of Korea","institution_ids":["https://openalex.org/I193352282"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"5"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12707","display_name":"Vehicle License Plate Recognition","score":0.9864,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/normalization","display_name":"Normalization","score":0.6693918},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.5548441},{"id":"https://openalex.org/keywords/graphics-processing-unit","display_name":"Graphics processing unit","score":0.510823}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8526589},{"id":"https://openalex.org/C136886441","wikidata":"https://www.wikidata.org/wiki/Q926129","display_name":"Normalization (sociology)","level":2,"score":0.6693918},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.64270383},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.63938344},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.60337645},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.56209624},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.5548441},{"id":"https://openalex.org/C2779851693","wikidata":"https://www.wikidata.org/wiki/Q183484","display_name":"Graphics processing unit","level":2,"score":0.510823},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.4576527},{"id":"https://openalex.org/C64543145","wikidata":"https://www.wikidata.org/wiki/Q162942","display_name":"Intersection (aeronautics)","level":2,"score":0.4556241},{"id":"https://openalex.org/C2780312720","wikidata":"https://www.wikidata.org/wiki/Q5689100","display_name":"Head (geology)","level":2,"score":0.4206484},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39927375},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.366885},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.085962236},{"id":"https://openalex.org/C114793014","wikidata":"https://www.wikidata.org/wiki/Q52109","display_name":"Geomorphology","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C19165224","wikidata":"https://www.wikidata.org/wiki/Q23404","display_name":"Anthropology","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3386164.3389086","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","score":0.42,"display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W2102605133","https://openalex.org/W2124386111","https://openalex.org/W2161969291","https://openalex.org/W2163808566","https://openalex.org/W2173179171","https://openalex.org/W2194775991","https://openalex.org/W2570343428","https://openalex.org/W2612445135","https://openalex.org/W2613718673","https://openalex.org/W2796347433","https://openalex.org/W2798542761","https://openalex.org/W2807075522","https://openalex.org/W2896409332","https://openalex.org/W2963037989","https://openalex.org/W2964290048","https://openalex.org/W3106250896"],"related_works":["https://openalex.org/W4321441197","https://openalex.org/W4294432981","https://openalex.org/W3011538607","https://openalex.org/W2953716828","https://openalex.org/W2944728705","https://openalex.org/W2904022177","https://openalex.org/W2790662448","https://openalex.org/W2591697403","https://openalex.org/W2469820710","https://openalex.org/W2359348847"],"abstract_inverted_index":{"Head":[0],"detection":[1,29,48,90],"is":[2,30],"a":[3,32,73,110],"key":[4],"problem":[5],"for":[6,78],"automated":[7],"passenger":[8],"counting":[9],"systems.":[10],"In":[11,81],"recent":[12],"decades,":[13],"considerable":[14],"effort":[15],"has":[16],"been":[17,64],"expended":[18],"to":[19,105,120,129,157,177],"develop":[20],"an":[21,92,125],"accurate":[22],"and":[23,43,61,153,159,164,190],"reliable":[24],"head":[25,28,89],"detector.":[26],"However,":[27,66],"still":[31],"challenging":[33],"task":[34],"because":[35],"of":[36,72],"problems":[37],"caused":[38],"by":[39],"variations":[40],"in":[41,91,109],"pose":[42],"occlusions.":[44],"Recently,":[45],"general":[46],"object":[47],"algorithms":[49,68],"based":[50],"on":[51,86],"convolutional":[52],"neural":[53],"networks":[54],"(CNNs),":[55],"such":[56],"as":[57],"Faster":[58],"R-CNN,":[59],"SSD":[60],"YOLO,":[62],"have":[63],"successful.":[65],"these":[67],"require":[69],"the":[70,97,102,116,161,179,185],"use":[71],"Graphics":[74],"Processing":[75],"Unit":[76,171],"(GPU)":[77],"real-time":[79,88,107],"performance.":[80],"this":[82],"study,":[83],"we":[84,100,114,123,134,139],"focused":[85],"developing":[87],"embedded":[93],"system.":[94],"Starting":[95],"with":[96],"Tiny-YOLOv3":[98],"network,":[99,163],"applied":[101],"following":[103],"strategies":[104],"achieve":[106],"performance":[108],"non-GPU":[111],"environment.":[112],"First,":[113],"reduced":[115],"input":[117],"image":[118],"size":[119],"224x224.":[121],"Second,":[122],"added":[124],"extra":[126],"yolo":[127],"layer":[128],"detect":[130],"smaller":[131],"heads.":[132],"Third,":[133],"removed":[135],"batch":[136],"normalization.":[137],"Finally,":[138],"conducted":[140],"depthwise":[141],"separable":[142],"convolution":[143],"rather":[144],"than":[145,192],"traditional":[146],"convolution.":[147],"Three":[148],"public":[149],"datasets,":[150],"HollywoodHeads,":[151],"SCUT_HEAD,":[152],"CrowdHuman,":[154],"were":[155,175],"exploited":[156],"train":[158],"test":[160],"proposed":[162,186],"Average":[165],"Precision":[166],"(AP)":[167],"at":[168],"Intersection":[169],"over":[170],"(IoU)":[172],"=":[173],"0.5":[174],"used":[176],"evaluate":[178],"tests.":[180],"Experimental":[181],"results":[182],"showed":[183],"that":[184],"network":[187],"perform":[188],"better":[189],"faster":[191],"Tiny-YOLOv3.":[193]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3033225421","counts_by_year":[],"updated_date":"2024-12-07T09:50:08.204963","created_date":"2020-06-12"}