{"id":"https://openalex.org/W3033645681","doi":"https://doi.org/10.1145/3386164.3389082","title":"Study on Medical Imaging Reports Tagging Extraction Based on Bi-LSTM + CRF","display_name":"Study on Medical Imaging Reports Tagging Extraction Based on Bi-LSTM + CRF","publication_year":2019,"publication_date":"2019-09-25","ids":{"openalex":"https://openalex.org/W3033645681","doi":"https://doi.org/10.1145/3386164.3389082","mag":"3033645681"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3386164.3389082","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103222435","display_name":"Jiyun Li","orcid":"https://orcid.org/0000-0001-9469-3079"},"institutions":[{"id":"https://openalex.org/I181326427","display_name":"Donghua University","ror":"https://ror.org/035psfh38","country_code":"CN","type":"education","lineage":["https://openalex.org/I181326427"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiyun Li","raw_affiliation_strings":["Computer Science and Technology, Donghua University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Computer Science and Technology, Donghua University, Shanghai, China","institution_ids":["https://openalex.org/I181326427"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5103158569","display_name":"Kaihua Li","orcid":"https://orcid.org/0000-0002-0778-0527"},"institutions":[{"id":"https://openalex.org/I181326427","display_name":"Donghua University","ror":"https://ror.org/035psfh38","country_code":"CN","type":"education","lineage":["https://openalex.org/I181326427"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Kaihua Li","raw_affiliation_strings":["Computer Science and Technology, Donghua University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Computer Science and Technology, Donghua University, Shanghai, China","institution_ids":["https://openalex.org/I181326427"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"5"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12422","display_name":"Radiomics and Machine Learning in Medical Imaging","score":0.9893,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10862","display_name":"AI in cancer detection","score":0.98,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/medical-record","display_name":"Medical record","score":0.5341555},{"id":"https://openalex.org/keywords/medical-information","display_name":"Medical information","score":0.41184342}],"concepts":[{"id":"https://openalex.org/C152565575","wikidata":"https://www.wikidata.org/wiki/Q1124538","display_name":"Conditional random field","level":2,"score":0.7322146},{"id":"https://openalex.org/C31601959","wikidata":"https://www.wikidata.org/wiki/Q931309","display_name":"Medical imaging","level":2,"score":0.72771096},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72375953},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.54886216},{"id":"https://openalex.org/C195910791","wikidata":"https://www.wikidata.org/wiki/Q1324077","display_name":"Medical record","level":2,"score":0.5341555},{"id":"https://openalex.org/C2780472235","wikidata":"https://www.wikidata.org/wiki/Q324634","display_name":"Mammography","level":4,"score":0.46211934},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.4611668},{"id":"https://openalex.org/C195807954","wikidata":"https://www.wikidata.org/wiki/Q1662562","display_name":"Information extraction","level":2,"score":0.46109545},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.45033485},{"id":"https://openalex.org/C19527891","wikidata":"https://www.wikidata.org/wiki/Q1120908","display_name":"Medical physics","level":1,"score":0.42230245},{"id":"https://openalex.org/C3019150057","wikidata":"https://www.wikidata.org/wiki/Q92779279","display_name":"Medical information","level":2,"score":0.41184342},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3467089},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.32642743},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.22564733},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.20782703},{"id":"https://openalex.org/C126322002","wikidata":"https://www.wikidata.org/wiki/Q11180","display_name":"Internal medicine","level":1,"score":0.098392725},{"id":"https://openalex.org/C121608353","wikidata":"https://www.wikidata.org/wiki/Q12078","display_name":"Cancer","level":2,"score":0.0},{"id":"https://openalex.org/C530470458","wikidata":"https://www.wikidata.org/wiki/Q128581","display_name":"Breast cancer","level":3,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3386164.3389082","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.81,"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions"}],"grants":[{"funder":"https://openalex.org/F4320325413","funder_display_name":"Shanghai Municipal Commission of Economy and Informatization","award_id":"2017-RGZN-01004"}],"datasets":[],"versions":[],"referenced_works_count":9,"referenced_works":["https://openalex.org/W1986024051","https://openalex.org/W2035221948","https://openalex.org/W2069767820","https://openalex.org/W2086543716","https://openalex.org/W2096175520","https://openalex.org/W2131744502","https://openalex.org/W2153579005","https://openalex.org/W2509746354","https://openalex.org/W2626699878"],"related_works":["https://openalex.org/W50079190","https://openalex.org/W3102147106","https://openalex.org/W3015234152","https://openalex.org/W2356597680","https://openalex.org/W2353619803","https://openalex.org/W2114846443","https://openalex.org/W2111726165","https://openalex.org/W2093471820","https://openalex.org/W1982302668","https://openalex.org/W1492005981"],"abstract_inverted_index":{"As":[0],"an":[1],"important":[2],"information":[3,40],"carrier":[4],"for":[5,11],"hospital":[6],"to":[7,28,37,47,104],"record":[8],"medical":[9,13,24,42,65],"activities":[10],"patients,":[12],"imaging":[14,66,80,119],"report":[15],"contains":[16],"a":[17,97],"large":[18],"amount":[19],"of":[20,51,73,107],"technical":[21],"terms":[22],"and":[23,54,71,76,115],"knowledge.":[25],"In":[26],"order":[27,103],"automatically":[29],"generate":[30],"computer-aided":[31],"diagnosis":[32],"reports,":[33,44,67,75],"it":[34],"is":[35],"necessary":[36],"extract":[38,105],"effective":[39],"from":[41],"image":[43],"so":[45],"as":[46,111],"reduce":[48],"the":[49,69,74,79,83,108,112,118],"pressure":[50],"professional":[52],"physicians":[53],"better":[55],"serve":[56],"clinical":[57],"decision-making.":[58],"This":[59],"paper":[60],"mainly":[61],"focuses":[62],"on":[63],"mammography":[64],"analyzes":[68],"structure":[70],"contents":[72],"deals":[77],"with":[78,96],"reports":[81],"using":[82],"machine":[84],"learning":[85],"model,":[86],"called":[87],"Bi-LSTM":[88],"+":[89],"CRF":[90],"(Bidirectional":[91],"Long":[92],"Short":[93],"Term":[94],"Memory":[95],"Conditional":[98],"Random":[99],"Fields":[100],"layer),":[101],"in":[102,117],"tags":[106],"lesion,":[109],"such":[110],"position,":[113],"size":[114],"shape":[116],"reports.":[120],"The":[121],"experimental":[122],"results":[123],"achieved":[124],"satisfactory":[125],"effort.":[126]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3033645681","counts_by_year":[],"updated_date":"2024-12-07T09:45:03.057102","created_date":"2020-06-12"}