{"id":"https://openalex.org/W3027009730","doi":"https://doi.org/10.1145/3384613.3384637","title":"A Novel Multi-period Multivariate Multi-scale Phase Locking Value and its Application","display_name":"A Novel Multi-period Multivariate Multi-scale Phase Locking Value and its Application","publication_year":2020,"publication_date":"2020-02-14","ids":{"openalex":"https://openalex.org/W3027009730","doi":"https://doi.org/10.1145/3384613.3384637","mag":"3027009730"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3384613.3384637","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102897545","display_name":"Mingai Li","orcid":"https://orcid.org/0000-0003-0718-8555"},"institutions":[{"id":"https://openalex.org/I37796252","display_name":"Beijing University of Technology","ror":"https://ror.org/037b1pp87","country_code":"CN","type":"funder","lineage":["https://openalex.org/I37796252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ming-Ai Li","raw_affiliation_strings":["Beijing University of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Technology, Beijing, China","institution_ids":["https://openalex.org/I37796252"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5068179622","display_name":"Nan Lin","orcid":"https://orcid.org/0000-0003-1324-1607"},"institutions":[{"id":"https://openalex.org/I37796252","display_name":"Beijing University of Technology","ror":"https://ror.org/037b1pp87","country_code":"CN","type":"funder","lineage":["https://openalex.org/I37796252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lin Nan","raw_affiliation_strings":["Beijing University of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Technology, Beijing, China","institution_ids":["https://openalex.org/I37796252"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101454000","display_name":"Yuxin Dong","orcid":"https://orcid.org/0000-0002-0166-7590"},"institutions":[{"id":"https://openalex.org/I37796252","display_name":"Beijing University of Technology","ror":"https://ror.org/037b1pp87","country_code":"CN","type":"funder","lineage":["https://openalex.org/I37796252"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yu-Xin Dong","raw_affiliation_strings":["Beijing University of Technology, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Technology, Beijing, China","institution_ids":["https://openalex.org/I37796252"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":60},"biblio":{"volume":null,"issue":null,"first_page":"145","last_page":"149"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},"topics":[{"id":"https://openalex.org/T10429","display_name":"EEG and Brain-Computer Interfaces","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T10220","display_name":"Machine Fault Diagnosis Techniques","score":0.9935,"subfield":{"id":"https://openalex.org/subfields/2207","display_name":"Control and Systems Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9932,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/phase-synchronization","display_name":"Phase synchronization","score":0.51197994},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.47291407},{"id":"https://openalex.org/keywords/spatial-filter","display_name":"Spatial filter","score":0.41261408}],"concepts":[{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.7240155},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.6908394},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.6789764},{"id":"https://openalex.org/C25570617","wikidata":"https://www.wikidata.org/wiki/Q1006462","display_name":"Hilbert\u2013Huang transform","level":3,"score":0.67716944},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.6412359},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63828766},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.55848384},{"id":"https://openalex.org/C194027367","wikidata":"https://www.wikidata.org/wiki/Q4420475","display_name":"Phase synchronization","level":3,"score":0.51197994},{"id":"https://openalex.org/C127162648","wikidata":"https://www.wikidata.org/wiki/Q16858953","display_name":"Channel (broadcasting)","level":2,"score":0.48879048},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.47291407},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.4674455},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.4656191},{"id":"https://openalex.org/C121475858","wikidata":"https://www.wikidata.org/wiki/Q2735911","display_name":"Spatial filter","level":2,"score":0.41261408},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.35225117},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.27304992},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.16717485},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.16585788},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.13055614},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3384613.3384637","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W120325173","https://openalex.org/W1938483826","https://openalex.org/W1967014131","https://openalex.org/W2007221293","https://openalex.org/W2013103838","https://openalex.org/W2054845099","https://openalex.org/W2080722576","https://openalex.org/W2101672699","https://openalex.org/W2120390927","https://openalex.org/W2123563890","https://openalex.org/W2164988848","https://openalex.org/W2169721303","https://openalex.org/W2328147906","https://openalex.org/W2512441693","https://openalex.org/W3014273487","https://openalex.org/W3140465067","https://openalex.org/W3141408015","https://openalex.org/W3144154667"],"related_works":["https://openalex.org/W3014107421","https://openalex.org/W2380939102","https://openalex.org/W2377062149","https://openalex.org/W2363056446","https://openalex.org/W2361368121","https://openalex.org/W2359718298","https://openalex.org/W2081563414","https://openalex.org/W1989862076","https://openalex.org/W1671198760","https://openalex.org/W154554909"],"abstract_inverted_index":{"Motor":[0],"Imagery":[1],"EEG":[2],"or":[3],"ECoG":[4],"is":[5,34,58,163],"the":[6,44,77,90,96,119,126,158,167,180,193],"most":[7],"popular":[8],"driving":[9],"signal":[10],"in":[11,25,101,139],"brain":[12],"computer":[13],"interface":[14],"based":[15,60],"rehabilitation":[16],"system.":[17],"Empirical":[18],"Mode":[19],"Decomposition":[20,134],"(EMD)":[21],"can":[22],"be":[23],"employed":[24],"feature":[26,144,199],"extraction,":[27],"which":[28],"only":[29],"a":[30,52,142,154],"single":[31],"scale":[32,98],"IMF":[33],"considered":[35],"by":[36,73,123,130],"using":[37],"Phase":[38],"Locking":[39],"Value":[40],"(PLV),":[41],"leading":[42],"to":[43,75,165],"loss":[45],"of":[46,92,173],"phase":[47,116,120],"information.":[48],"In":[49],"this":[50],"paper,":[51],"Multi-period":[53],"Multivariate":[54,63],"Multi-scale":[55],"PLV":[56,91],"(MMMPLV)":[57],"proposed":[59,181],"on":[61,153],"Noise-Assisted":[62],"EMD":[64],"(NAMEMD).":[65],"The":[66,110,170],"selected":[67],"multi-channel":[68],"MI-ECoG":[69,108],"are":[70,84,99,113,137],"decomposed":[71],"simultaneously":[72],"NAMEMD":[74],"obtain":[76],"multivariate":[78],"multi-scale":[79],"IMFs,":[80],"and":[81,125,157,188,197],"their":[82],"length":[83],"divided":[85],"into":[86],"many":[87],"periods.":[88],"Then":[89],"pair-wise":[93],"IMFs":[94],"at":[95],"same":[97],"calculated":[100],"each":[102],"time":[103],"period":[104],"for":[105],"any":[106],"two-channel":[107],"signals.":[109],"resulted":[111],"MMMPLV":[112,124],"constructed":[114],"as":[115,148],"features.":[117,169],"Furthermore,":[118],"features":[121,128],"generated":[122],"spatial":[127],"extracted":[129],"Common":[131],"Spatial":[132],"Subspace":[133],"(CSSD)":[135],"algorithm":[136],"fused":[138],"series,":[140],"yielding":[141],"new":[143],"extraction":[145,200],"method,":[146],"denoted":[147],"MMMPC.":[149],"Experiments":[150],"were":[151],"conducted":[152],"public":[155],"database,":[156],"Support":[159],"Vector":[160],"Machine":[161],"(SVM)":[162],"used":[164],"classify":[166],"combined":[168],"experiment":[171],"results":[172],"9-fold":[174],"Cross":[175],"Validation":[176],"(CV)":[177],"show":[178],"that":[179],"method":[182],"yields":[183],"relative":[184],"higher":[185],"classification":[186],"accuracy":[187],"better":[189],"stability":[190],"compared":[191],"with":[192],"other":[194],"synchronization":[195],"methods":[196],"classical":[198],"methods.":[201]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3027009730","counts_by_year":[],"updated_date":"2025-01-28T22:51:58.086703","created_date":"2020-05-29"}