{"id":"https://openalex.org/W3088983215","doi":"https://doi.org/10.1145/3383313.3411477","title":"The Embeddings That Came in From the Cold: Improving Vectors for New and Rare Products with Content-Based Inference","display_name":"The Embeddings That Came in From the Cold: Improving Vectors for New and Rare Products with Content-Based Inference","publication_year":2020,"publication_date":"2020-09-19","ids":{"openalex":"https://openalex.org/W3088983215","doi":"https://doi.org/10.1145/3383313.3411477","mag":"3088983215"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3383313.3411477","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5008079520","display_name":"Jacopo Tagliabue","orcid":"https://orcid.org/0000-0001-8634-6122"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jacopo Tagliabue","raw_affiliation_strings":["Coveo, United States"],"affiliations":[{"raw_affiliation_string":"Coveo, United States","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5069236966","display_name":"Bingqing Yu","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Bingqing Yu","raw_affiliation_strings":["Coveo, United States"],"affiliations":[{"raw_affiliation_string":"Coveo, United States","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5060377481","display_name":"Federico Bianchi","orcid":"https://orcid.org/0000-0002-6155-5531"},"institutions":[{"id":"https://openalex.org/I71209653","display_name":"Bocconi University","ror":"https://ror.org/05crjpb27","country_code":"IT","type":"funder","lineage":["https://openalex.org/I71209653"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Federico Bianchi","raw_affiliation_strings":["Bocconi University, Italy"],"affiliations":[{"raw_affiliation_string":"Bocconi University, Italy","institution_ids":["https://openalex.org/I71209653"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.206,"has_fulltext":false,"cited_by_count":17,"citation_normalized_percentile":{"value":0.857451,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":"577","last_page":"578"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Advanced Text Analysis Techniques","score":0.9964,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11309","display_name":"Music and Audio Processing","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[],"concepts":[{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.7887033},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7047909},{"id":"https://openalex.org/C90673727","wikidata":"https://www.wikidata.org/wiki/Q901718","display_name":"Product (mathematics)","level":2,"score":0.60240746},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.52504563},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.42769128},{"id":"https://openalex.org/C18762648","wikidata":"https://www.wikidata.org/wiki/Q42213","display_name":"Work (physics)","level":2,"score":0.41648188},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.3763283},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36371884},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.34685022},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.15548238},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08651373},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3383313.3411477","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.66,"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":9,"referenced_works":["https://openalex.org/W2796055497","https://openalex.org/W2950577311","https://openalex.org/W2962917313","https://openalex.org/W2963642516","https://openalex.org/W2966033979","https://openalex.org/W2970641574","https://openalex.org/W3046131267","https://openalex.org/W3099726625","https://openalex.org/W4301213493"],"related_works":["https://openalex.org/W4321636575","https://openalex.org/W35446969","https://openalex.org/W2961085424","https://openalex.org/W2741131631","https://openalex.org/W2357796999","https://openalex.org/W2156919374","https://openalex.org/W2055243143","https://openalex.org/W2045526782","https://openalex.org/W1986418932","https://openalex.org/W1984019423"],"abstract_inverted_index":{"Training":[0],"product":[1,45],"embeddings":[2,49],"in":[3,59],"a":[4],"multi-tenant":[5],"scenario":[6],"involves":[7],"solving":[8],"the":[9,52],"challenges":[10],"of":[11,17],"ever":[12],"changing":[13],"catalogs":[14],"across":[15],"dozens":[16],"deployments,":[18],"without":[19,63],"supervision.":[20],"In":[21],"this":[22],"work,":[23],"we":[24,27,40],"detail":[25],"how":[26,42],"deal":[28],"with":[29,55],"new":[30],"and":[31,62],"rare":[32],"products":[33],"when":[34],"building":[35],"neural":[36],"representations":[37],"at":[38],"scale:":[39],"show":[41],"to":[43,50],"inject":[44],"knowledge":[46],"into":[47],"behavior-based":[48],"provide":[51],"best":[53],"accuracy":[54],"minimal":[56],"engineering":[57],"changes":[58],"existing":[60],"infrastructure":[61],"additional":[64],"manual":[65],"effort.":[66]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3088983215","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":7},{"year":2020,"cited_by_count":2}],"updated_date":"2025-03-15T14:38:49.593523","created_date":"2020-10-01"}