{"id":"https://openalex.org/W3009364683","doi":"https://doi.org/10.1145/3379247.3379287","title":"Body Fat Percentage Prediction Algorithm Based on PSO-ELM Model and BIA","display_name":"Body Fat Percentage Prediction Algorithm Based on PSO-ELM Model and BIA","publication_year":2020,"publication_date":"2020-01-04","ids":{"openalex":"https://openalex.org/W3009364683","doi":"https://doi.org/10.1145/3379247.3379287","mag":"3009364683"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3379247.3379287","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100373745","display_name":"Xiaohong Chen","orcid":"https://orcid.org/0000-0002-9797-8384"},"institutions":[{"id":"https://openalex.org/I41198531","display_name":"Nanjing University of Posts and Telecommunications","ror":"https://ror.org/043bpky34","country_code":"CN","type":"funder","lineage":["https://openalex.org/I41198531"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaohui Chen","raw_affiliation_strings":["Nanjing University of Posts and Telecommunications, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Nanjing University of Posts and Telecommunications, Nanjing, China","institution_ids":["https://openalex.org/I41198531"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101630302","display_name":"Wenxuan Xie","orcid":"https://orcid.org/0009-0005-1979-1564"},"institutions":[{"id":"https://openalex.org/I41198531","display_name":"Nanjing University of Posts and Telecommunications","ror":"https://ror.org/043bpky34","country_code":"CN","type":"funder","lineage":["https://openalex.org/I41198531"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenxuan Xie","raw_affiliation_strings":["Nanjing University of Posts and Telecommunications, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Nanjing University of Posts and Telecommunications, Nanjing, China","institution_ids":["https://openalex.org/I41198531"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101848033","display_name":"Shuyang Yu","orcid":"https://orcid.org/0000-0002-1042-1576"},"institutions":[{"id":"https://openalex.org/I41198531","display_name":"Nanjing University of Posts and Telecommunications","ror":"https://ror.org/043bpky34","country_code":"CN","type":"funder","lineage":["https://openalex.org/I41198531"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuyang Yu","raw_affiliation_strings":["Nanjing University of Posts and Telecommunications, Nanjing, China"],"affiliations":[{"raw_affiliation_string":"Nanjing University of Posts and Telecommunications, Nanjing, China","institution_ids":["https://openalex.org/I41198531"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.138,"has_fulltext":false,"cited_by_count":1,"citation_normalized_percentile":{"value":0.406078,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":60,"max":69},"biblio":{"volume":null,"issue":null,"first_page":"5","last_page":"8"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12279","display_name":"Body Composition Measurement Techniques","score":0.9754,"subfield":{"id":"https://openalex.org/subfields/2737","display_name":"Physiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T12279","display_name":"Body Composition Measurement Techniques","score":0.9754,"subfield":{"id":"https://openalex.org/subfields/2737","display_name":"Physiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12994","display_name":"Infrared Thermography in Medicine","score":0.9641,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11109","display_name":"Thermoregulation and physiological responses","score":0.9529,"subfield":{"id":"https://openalex.org/subfields/2737","display_name":"Physiology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/extreme-learning-machine","display_name":"Extreme Learning Machine","score":0.8757719}],"concepts":[{"id":"https://openalex.org/C2780150128","wikidata":"https://www.wikidata.org/wiki/Q21948731","display_name":"Extreme learning machine","level":3,"score":0.8757719},{"id":"https://openalex.org/C85617194","wikidata":"https://www.wikidata.org/wiki/Q2072794","display_name":"Particle swarm optimization","level":2,"score":0.8678762},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.5160444},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.5061278},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43487096},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.37113553},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.32807097},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.28824615},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.15773952}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3379247.3379287","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":2,"referenced_works":["https://openalex.org/W2765759596","https://openalex.org/W2975408209"],"related_works":["https://openalex.org/W4297902562","https://openalex.org/W31566076","https://openalex.org/W2969890106","https://openalex.org/W2905251838","https://openalex.org/W2804652951","https://openalex.org/W2741186499","https://openalex.org/W2556335056","https://openalex.org/W2067443264","https://openalex.org/W2002678693","https://openalex.org/W1584764049"],"abstract_inverted_index":{"Bioelectric":[0],"impedance":[1],"analysis":[2],"(BIA)":[3],"measures":[4],"the":[5,12,40,43,47,57,60,69,80,93,116,123,129],"body":[6,14,73,98,136],"fat":[7,15,74,137],"percentage":[8,75],"value":[9],"compared":[10],"with":[11],"traditional":[13],"detection":[16],"method.":[17],"It":[18],"has":[19],"many":[20],"advantages,":[21],"such":[22,96],"as":[23,97],"non-invasive,":[24],"harmless,":[25],"cheap,":[26],"simple":[27],"operation":[28],"and":[29,71,101,103,114,126,134],"rich":[30],"functional":[31],"information.":[32],"The":[33,89],"more":[34],"attention":[35],"you":[36],"pay.":[37],"Aiming":[38],"at":[39],"problem":[41],"that":[42],"prediction":[44,76,139],"results":[45],"of":[46],"extreme":[48,84],"learning":[49,85],"machine":[50,86],"(ELM)":[51],"regression":[52],"model":[53],"are":[54],"affected":[55],"by":[56],"input":[58,124],"parameters,":[59],"particle":[61,81,117],"swarm":[62,82,118],"optimization":[63,83,119],"algorithm":[64,120],"(PSO)":[65],"is":[66,87],"applied":[67],"to":[68,121],"ELM,":[70,130],"a":[72,105],"method":[77,90],"based":[78],"on":[79],"proposed.":[88],"firstly":[91],"preprocesses":[92],"physiological":[94],"parameters":[95],"impedance,":[99],"height":[100],"weight,":[102],"constructs":[104],"training":[106],"sample":[107],"set,":[108],"then":[109],"establishes":[110],"an":[111],"ELM":[112],"model,":[113],"uses":[115],"optimize":[122],"weights":[125],"thresholds":[127],"in":[128],"thereby":[131],"establishing":[132],"NWP-based":[133],"PSO-ELM":[135],"rate":[138],"model.":[140]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3009364683","counts_by_year":[{"year":2022,"cited_by_count":1}],"updated_date":"2025-02-25T15:47:59.503391","created_date":"2020-03-13"}