{"id":"https://openalex.org/W3023648687","doi":"https://doi.org/10.1145/3366424.3382118","title":"Improved Advertisement Targeting via Fine-grained Location Prediction using Twitter","display_name":"Improved Advertisement Targeting via Fine-grained Location Prediction using Twitter","publication_year":2020,"publication_date":"2020-04-20","ids":{"openalex":"https://openalex.org/W3023648687","doi":"https://doi.org/10.1145/3366424.3382118","mag":"3023648687"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3366424.3382118","pdf_url":null,"source":{"id":"https://openalex.org/S4306506650","display_name":"Companion Proceedings of the The Web Conference 2018","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5029919026","display_name":"Shogo Matsuno","orcid":"https://orcid.org/0000-0002-6813-2320"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Shogo Matsuno","raw_affiliation_strings":["Hottolink Inc."],"affiliations":[{"raw_affiliation_string":"Hottolink Inc.","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091303934","display_name":"Sakae Mizuki","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Sakae Mizuki","raw_affiliation_strings":["Hottolink Inc."],"affiliations":[{"raw_affiliation_string":"Hottolink Inc.","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5032369426","display_name":"Takeshi Sakaki","orcid":"https://orcid.org/0000-0002-5830-4352"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Takeshi Sakaki","raw_affiliation_strings":["Hottolink Inc."],"affiliations":[{"raw_affiliation_string":"Hottolink Inc.","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":0,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.494,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.901316,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11980","display_name":"Understanding Human Mobility Patterns","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11980","display_name":"Understanding Human Mobility Patterns","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10757","display_name":"Volunteered Geographic Information and Geospatial Crowdsourcing","score":0.9877,"subfield":{"id":"https://openalex.org/subfields/3305","display_name":"Geography, Planning and Development"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10203","display_name":"Recommender System Technologies","score":0.9643,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/granularity","display_name":"Granularity","score":0.73454},{"id":"https://openalex.org/keywords/social-sensing","display_name":"Social Sensing","score":0.538093},{"id":"https://openalex.org/keywords/location-based-data","display_name":"Location-Based Data","score":0.537013},{"id":"https://openalex.org/keywords/social-network","display_name":"Social network (sociolinguistics)","score":0.43217504}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7569628},{"id":"https://openalex.org/C177774035","wikidata":"https://www.wikidata.org/wiki/Q1246948","display_name":"Granularity","level":2,"score":0.73454},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.5685978},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.5139336},{"id":"https://openalex.org/C518677369","wikidata":"https://www.wikidata.org/wiki/Q202833","display_name":"Social media","level":2,"score":0.47085184},{"id":"https://openalex.org/C2780378061","wikidata":"https://www.wikidata.org/wiki/Q25351891","display_name":"Service (business)","level":2,"score":0.4633513},{"id":"https://openalex.org/C4727928","wikidata":"https://www.wikidata.org/wiki/Q17164759","display_name":"Social network (sociolinguistics)","level":3,"score":0.43217504},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38129202},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.34182042},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.3211984},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.18160143},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08255911},{"id":"https://openalex.org/C136264566","wikidata":"https://www.wikidata.org/wiki/Q159810","display_name":"Economy","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3366424.3382118","pdf_url":null,"source":{"id":"https://openalex.org/S4306506650","display_name":"Companion Proceedings of the The Web Conference 2018","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1890727290","https://openalex.org/W1972338643","https://openalex.org/W1984272552","https://openalex.org/W1989134410","https://openalex.org/W2018277822","https://openalex.org/W2048613595","https://openalex.org/W2062079386","https://openalex.org/W2069090820","https://openalex.org/W2077233185","https://openalex.org/W2080097338","https://openalex.org/W2113786274","https://openalex.org/W2142191319","https://openalex.org/W2467321947","https://openalex.org/W2567096986","https://openalex.org/W2575400845","https://openalex.org/W2581006336","https://openalex.org/W2612301670","https://openalex.org/W2808373708","https://openalex.org/W4393074830"],"related_works":["https://openalex.org/W4256502920","https://openalex.org/W4226090359","https://openalex.org/W2999756192","https://openalex.org/W2931688134","https://openalex.org/W2748952813","https://openalex.org/W2378857091","https://openalex.org/W2377919138","https://openalex.org/W2120116197","https://openalex.org/W159653547","https://openalex.org/W103652678"],"abstract_inverted_index":{"With":[0],"the":[1,16,24,40,58,84,91,118,128,137,148,154,159,165,170,179,185,188],"growing":[2],"demand":[3],"for":[4],"social":[5],"network":[6],"service":[7],"advertisements,":[8],"more":[9,31],"accurate":[10],"targeting":[11],"methods":[12],"are":[13,114],"required.":[14],"Therefore,":[15],"authors":[17],"of":[18,26,93,111,139,187],"this":[19],"study":[20],"try":[21,134],"to":[22,36,43,90,116,135],"predict":[23,136],"location":[25,60,119],"Twitter":[27,80],"users":[28,81,112,140],"in":[29,173],"a":[30,53,65,73,97,100,105,109],"fine-grained":[32],"manner":[33],"with":[34,87],"regard":[35],"area":[37,86],"marketing.":[38],"Specifically,":[39],"visit":[41,83,117],"probability":[42],"each":[44,142],"segment":[45],"(e.g.,":[46],"prefecture":[47,155],"and":[48,57,68,131,162],"city)":[49],"is":[50,62,124,151,176],"predicted":[51],"by":[52],"label":[54],"propagation":[55],"algorithm,":[56],"user's":[59],"information":[61],"obtained":[63],"from":[64],"geo-tagged":[66],"tweet":[67],"an":[69,94,121],"user":[70],"profile":[71],"as":[72],"label.":[74],"The":[75,144],"proposed":[76,129,189],"method":[77],"predicts":[78],"which":[79],"may":[82],"corresponding":[85],"improved":[88],"granularity,":[89],"level":[92],"oaza":[95,122,166,180],"or":[96],"block.":[98],"As":[99],"verification":[101],"experiment,":[102],"we":[103,132],"construct":[104],"system":[106],"that":[107,147],"outputs":[108],"list":[110],"who":[113],"likely":[115],"when":[120],"name":[123],"entered":[125],"based":[126],"on":[127],"method,":[130],"also":[133],"possibility":[138],"visiting":[141],"segment.":[143],"results":[145,183],"show":[146],"average":[149],"accuracy":[150,172],"73%":[152],"at":[153,158,164,178],"level,":[156,161],"42%":[157],"city":[160],"25%":[163],"level.":[167,181],"In":[168],"addition,":[169],"prediction":[171],"Tokyo":[174],"alone":[175],"31%":[177],"These":[182],"indicate":[184],"effectiveness":[186],"method.":[190]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3023648687","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2024-11-26T01:53:44.613840","created_date":"2020-05-13"}