{"id":"https://openalex.org/W2997872528","doi":"https://doi.org/10.1145/3364836.3364894","title":"Fixed-Point Deformable U-Net for Pancreas CT Segmentation","display_name":"Fixed-Point Deformable U-Net for Pancreas CT Segmentation","publication_year":2019,"publication_date":"2019-08-24","ids":{"openalex":"https://openalex.org/W2997872528","doi":"https://doi.org/10.1145/3364836.3364894","mag":"2997872528"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3364836.3364894","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5002311602","display_name":"Meixiang Huang","orcid":"https://orcid.org/0000-0002-7552-5499"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Meixiang Huang","raw_affiliation_strings":["School of Mathematical Sciences, Zhejiang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematical Sciences, Zhejiang University, Hangzhou, China","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5082191965","display_name":"Chongfei Huang","orcid":"https://orcid.org/0009-0008-4725-7854"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chongfei Huang","raw_affiliation_strings":["School of Mathematical Sciences, Zhejiang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematical Sciences, Zhejiang University, Hangzhou, China","institution_ids":["https://openalex.org/I76130692"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101561039","display_name":"Jing Yuan","orcid":"https://orcid.org/0000-0002-3548-5875"},"institutions":[{"id":"https://openalex.org/I149594827","display_name":"Xidian University","ror":"https://ror.org/05s92vm98","country_code":"CN","type":"education","lineage":["https://openalex.org/I149594827"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jing Yuan","raw_affiliation_strings":["School of Mathematics and Statistics, Xidian University, Xi'an, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematics and Statistics, Xidian University, Xi'an, China","institution_ids":["https://openalex.org/I149594827"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5072184948","display_name":"Dexing Kong","orcid":"https://orcid.org/0000-0001-9339-8086"},"institutions":[{"id":"https://openalex.org/I76130692","display_name":"Zhejiang University","ror":"https://ror.org/00a2xv884","country_code":"CN","type":"education","lineage":["https://openalex.org/I76130692"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dexing Kong","raw_affiliation_strings":["School of Mathematical Sciences, Zhejiang University, Hangzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Mathematical Sciences, Zhejiang University, Hangzhou, China","institution_ids":["https://openalex.org/I76130692"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.225,"has_fulltext":false,"cited_by_count":4,"citation_normalized_percentile":{"value":0.556394,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":77,"max":79},"biblio":{"volume":null,"issue":null,"first_page":"283","last_page":"287"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11775","display_name":"COVID-19 diagnosis using AI","score":0.9957,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9878,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/upsampling","display_name":"Upsampling","score":0.6704581},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.49219385}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7235604},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.69081193},{"id":"https://openalex.org/C110384440","wikidata":"https://www.wikidata.org/wiki/Q1143270","display_name":"Upsampling","level":3,"score":0.6704581},{"id":"https://openalex.org/C2779343474","wikidata":"https://www.wikidata.org/wiki/Q3109175","display_name":"Context (archaeology)","level":2,"score":0.64840674},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.5876734},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.57386357},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.52189356},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.49219385},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.43810803},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.4260014},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.26796228},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.22768629},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.07109967},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3364836.3364894","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.44}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":22,"referenced_works":["https://openalex.org/W1884191083","https://openalex.org/W1901129140","https://openalex.org/W2000585255","https://openalex.org/W2163605009","https://openalex.org/W2271840356","https://openalex.org/W2432481613","https://openalex.org/W2585890928","https://openalex.org/W2618237340","https://openalex.org/W2705158815","https://openalex.org/W2767623272","https://openalex.org/W2771252144","https://openalex.org/W2884561390","https://openalex.org/W2886667086","https://openalex.org/W2895871797","https://openalex.org/W2898910301","https://openalex.org/W2902303185","https://openalex.org/W2949117887","https://openalex.org/W2952464756","https://openalex.org/W2962835968","https://openalex.org/W2963683318","https://openalex.org/W3104390926","https://openalex.org/W855272188"],"related_works":["https://openalex.org/W4310746709","https://openalex.org/W3155117723","https://openalex.org/W2964954556","https://openalex.org/W2890372105","https://openalex.org/W2607795551","https://openalex.org/W2281134365","https://openalex.org/W2062399876","https://openalex.org/W1991429770","https://openalex.org/W1983892167","https://openalex.org/W1522196789"],"abstract_inverted_index":{"Delineating":[0],"pancreas":[1,44,57,115,165],"region":[2,116],"is":[3,91,110],"of":[4,16,43,56,112,152,170],"great":[5],"importance":[6],"for":[7,53,162],"medical":[8],"image":[9],"analysis,":[10],"but":[11],"challenging":[12],"due":[13],"to":[14,85,93,129,147],"imbalance":[15,151],"labelling":[17],"data,":[18],"background":[19],"distractions":[20],"and":[21,97,120,132,172],"high":[22],"anatomical":[23],"variability.":[24],"In":[25],"this":[26],"work,":[27],"we":[28,70,135],"propose":[29,136],"a":[30,46,137],"fixed-point":[31],"deformable":[32,65,73],"U-Net,":[33],"namely":[34],"fixedpoint":[35],"DUNet,":[36,81],"which":[37,90],"exploits":[38],"the":[39,54,62,72,76,87,114,125,143,149,156],"essential":[40],"local":[41],"features":[42],"with":[45,82,106],"U-shape":[47],"architecture":[48],"in":[49,168],"an":[50],"end-to-end":[51],"manner":[52],"segmentation":[55],"CT":[58,166],"images.":[59],"Inspired":[60],"by":[61,101,122],"recently":[63],"introduced":[64],"convolutional":[66],"networks":[67],"([1],":[68],"[2]),":[69],"integrate":[71],"convolution":[74],"into":[75],"proposed":[77,157],"neural":[78],"network,":[79],"i.e.":[80],"upsampling":[83],"operators":[84],"increase":[86],"output":[88],"resolution,":[89],"designed":[92],"extract":[94],"context":[95],"information":[96],"enable":[98],"precise":[99],"localization":[100],"combining":[102],"low-level":[103],"feature":[104],"maps":[105],"high-level":[107],"ones.":[108],"DUNet":[109],"capable":[111],"capturing":[113],"at":[117],"various":[118],"shapes":[119],"scales":[121,131],"adaptively":[123],"adjusting":[124],"receptive":[126],"fields":[127],"according":[128],"pancreas'":[130],"shapes.":[133],"Meanwhile,":[134],"new":[138],"loss":[139],"function":[140],"based":[141],"on":[142],"generalized":[144],"dice":[145],"coefficient":[146],"address":[148],"class":[150],"pancreas.":[153],"Experiments":[154],"showed":[155],"method":[158],"outperformed":[159],"state-of-the-art":[160],"methods":[161],"automatically":[163],"segmenting":[164],"images":[167],"terms":[169],"accuracy":[171],"reliability.":[173]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2997872528","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2025-01-17T22:17:43.053831","created_date":"2020-01-10"}