{"id":"https://openalex.org/W2998267751","doi":"https://doi.org/10.1145/3364836.3364869","title":"Expanded Mask R-CNN's Retinal Edema Detection Network","display_name":"Expanded Mask R-CNN's Retinal Edema Detection Network","publication_year":2019,"publication_date":"2019-08-24","ids":{"openalex":"https://openalex.org/W2998267751","doi":"https://doi.org/10.1145/3364836.3364869","mag":"2998267751"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3364836.3364869","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5046492947","display_name":"Haiying Xia","orcid":"https://orcid.org/0000-0001-8711-1851"},"institutions":[{"id":"https://openalex.org/I29739308","display_name":"Guangxi Normal University","ror":"https://ror.org/02frt9q65","country_code":"CN","type":"education","lineage":["https://openalex.org/I29739308"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Haiying Xia","raw_affiliation_strings":["College of Electronic Engineering, Guangxi Normal University"],"affiliations":[{"raw_affiliation_string":"College of Electronic Engineering, Guangxi Normal University","institution_ids":["https://openalex.org/I29739308"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5014148524","display_name":"Fuyu Zhu","orcid":null},"institutions":[{"id":"https://openalex.org/I29739308","display_name":"Guangxi Normal University","ror":"https://ror.org/02frt9q65","country_code":"CN","type":"education","lineage":["https://openalex.org/I29739308"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fuyu Zhu","raw_affiliation_strings":["College of Electronic Engineering, Guangxi Normal University"],"affiliations":[{"raw_affiliation_string":"College of Electronic Engineering, Guangxi Normal University","institution_ids":["https://openalex.org/I29739308"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.510742,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":74},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11438","display_name":"Detection and Management of Retinal Diseases","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11438","display_name":"Detection and Management of Retinal Diseases","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T12599","display_name":"Ocular Manifestations of COVID-19","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/2731","display_name":"Ophthalmology"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9945,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/object-detection","display_name":"Object Detection","score":0.538475},{"id":"https://openalex.org/keywords/retinal-artery-occlusion","display_name":"Retinal Artery Occlusion","score":0.533817},{"id":"https://openalex.org/keywords/image-recognition","display_name":"Image Recognition","score":0.526227},{"id":"https://openalex.org/keywords/image-analysis","display_name":"Image Analysis","score":0.507684}],"concepts":[{"id":"https://openalex.org/C2780827179","wikidata":"https://www.wikidata.org/wiki/Q422001","display_name":"Retinal","level":2,"score":0.63070136},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.60614103},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4483489},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.44290826},{"id":"https://openalex.org/C118487528","wikidata":"https://www.wikidata.org/wiki/Q161437","display_name":"Ophthalmology","level":1,"score":0.23344618},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.16083694}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3364836.3364869","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1536680647","https://openalex.org/W1836465849","https://openalex.org/W1861492603","https://openalex.org/W2109255472","https://openalex.org/W2117539524","https://openalex.org/W2165698076","https://openalex.org/W2183341477","https://openalex.org/W2194775991","https://openalex.org/W2565639579","https://openalex.org/W2806070179","https://openalex.org/W2963150697","https://openalex.org/W639708223"],"related_works":["https://openalex.org/W4239686595","https://openalex.org/W3181746755","https://openalex.org/W3119610945","https://openalex.org/W3090822330","https://openalex.org/W2998526951","https://openalex.org/W2901465038","https://openalex.org/W2749468216","https://openalex.org/W2735477435","https://openalex.org/W2521062615","https://openalex.org/W2285788670"],"abstract_inverted_index":{"To":[0],"better":[1],"assist":[2],"doctors":[3],"in":[4,9,45,70],"rapid":[5],"recognition":[6,169],"of":[7,40,52,76,96,100,117,124,163,171],"lesions":[8],"OTC":[10],"edema":[11,126,133,165],"images,":[12],"an":[13],"expended":[14,156],"Mask":[15,153,157,174,179],"R-CNN":[16,151,158,177,180],"method":[17],"was":[18],"proposed":[19],"to":[20,32,60,105,137,146],"detect":[21],"and":[22,81,120,141,152,178],"recognize":[23],"the":[24,50,61,65,73,91,94,98,101,115,122,125,139,155,164,172],"retinal":[25,132],"edema.":[26],"We":[27],"also":[28],"design":[29],"a":[30,46,56,107],"software":[31],"label":[33],"8960":[34,131],"images":[35,41,134,143],"automatically.":[36],"A":[37],"large":[38],"number":[39],"can":[42,86,113,181],"be":[43,87],"labeled":[44],"few":[47],"minutes.":[48],"For":[49],"backbone":[51],"Resnet101,":[53],"we":[54],"add":[55],"parallel":[57],"1*1":[58],"convolution":[59],"basic":[62],"residual":[63,66],"block,":[64],"blocks":[67],"are":[68,79,103,183],"widens":[69],"its":[71],"width,":[72],"receptive":[74],"field":[75],"feature":[77,84,110,118],"maps":[78,119],"enlarged,":[80],"more":[82,160],"richer":[83],"information":[85],"extracted.":[88],"By":[89],"adding":[90],"filters":[92,102],"with":[93,149],"size":[95],"1*1,":[97],"outputs":[99],"equivalent":[104],"multiplying":[106],"coefficient":[108],"for":[109],"maps,":[111],"which":[112],"enhance":[114],"representation":[116],"facilitate":[121],"location":[123,162],"area.":[127,167],"In":[128],"our":[129],"experiments,":[130],"were":[135,144],"used":[136],"train":[138],"model":[140],"1920":[142],"kept":[145],"test.":[147],"Compared":[148],"Faster":[150,176],"R-CNN,":[154,175],"achieved":[159],"accurate":[161],"lesion":[166],"The":[168],"accuracy":[170],"expanded":[173],"reach":[182],"92.27%,87.95%,90.65%,":[184],"respectively.":[185]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2998267751","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2024-11-18T12:40:02.114597","created_date":"2020-01-10"}