{"id":"https://openalex.org/W2981595078","doi":"https://doi.org/10.1145/3361242.3361259","title":"A Preliminary Study on Data Augmentation of Deep Learning for Image Classification","display_name":"A Preliminary Study on Data Augmentation of Deep Learning for Image Classification","publication_year":2019,"publication_date":"2019-10-24","ids":{"openalex":"https://openalex.org/W2981595078","doi":"https://doi.org/10.1145/3361242.3361259","mag":"2981595078"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3361242.3361259","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/1906.11887","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5073284259","display_name":"Cheng Lei","orcid":"https://orcid.org/0000-0001-8439-4235"},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"education","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Cheng Lei","raw_affiliation_strings":["State Key Laboratory of Novel Software Technology, Nanjing University, Software Testing Engineering Laboratory of Jiangsu Province"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Novel Software Technology, Nanjing University, Software Testing Engineering Laboratory of Jiangsu Province","institution_ids":["https://openalex.org/I881766915"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072187510","display_name":"Benlin Hu","orcid":null},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"education","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Benlin Hu","raw_affiliation_strings":["State Key Laboratory of Novel Software Technology, Nanjing University, Software Testing Engineering Laboratory of Jiangsu Province"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Novel Software Technology, Nanjing University, Software Testing Engineering Laboratory of Jiangsu Province","institution_ids":["https://openalex.org/I881766915"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100391417","display_name":"Dong Wang","orcid":"https://orcid.org/0000-0001-6946-1962"},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"education","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Dong Wang","raw_affiliation_strings":["State Key Laboratory of Novel Software Technology, Nanjing University, Software Testing Engineering Laboratory of Jiangsu Province"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Novel Software Technology, Nanjing University, Software Testing Engineering Laboratory of Jiangsu Province","institution_ids":["https://openalex.org/I881766915"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100452839","display_name":"Shu Zhang","orcid":"https://orcid.org/0000-0002-3431-744X"},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"education","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shu Zhang","raw_affiliation_strings":["State Key Laboratory of Novel Software Technology, Nanjing University, Software Testing Engineering Laboratory of Jiangsu Province"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Novel Software Technology, Nanjing University, Software Testing Engineering Laboratory of Jiangsu Province","institution_ids":["https://openalex.org/I881766915"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100422935","display_name":"Zhenyu Chen","orcid":"https://orcid.org/0000-0002-9592-7022"},"institutions":[{"id":"https://openalex.org/I881766915","display_name":"Nanjing University","ror":"https://ror.org/01rxvg760","country_code":"CN","type":"education","lineage":["https://openalex.org/I881766915"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhenyu Chen","raw_affiliation_strings":["State Key Laboratory of Novel Software Technology, Nanjing University, Software Testing Engineering Laboratory of Jiangsu Province"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Novel Software Technology, Nanjing University, Software Testing Engineering Laboratory of Jiangsu Province","institution_ids":["https://openalex.org/I881766915"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.926,"has_fulltext":false,"cited_by_count":43,"citation_normalized_percentile":{"value":0.999876,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Machine Learning and Data Classification","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Advanced Image and Video Retrieval Techniques","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.46519056}],"concepts":[{"id":"https://openalex.org/C177148314","wikidata":"https://www.wikidata.org/wiki/Q170084","display_name":"Generalization","level":2,"score":0.7490474},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72993904},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.69346094},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.56946033},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.53077},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4714326},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.46519056},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.40878558},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.195306},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3361242.3361259","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1906.11887","pdf_url":"http://arxiv.org/pdf/1906.11887","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1906.11887","pdf_url":"http://arxiv.org/pdf/1906.11887","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W2119191234","https://openalex.org/W2194775991","https://openalex.org/W2549139847","https://openalex.org/W2752782242","https://openalex.org/W2962744952","https://openalex.org/W2962971773","https://openalex.org/W2964081807","https://openalex.org/W2965658867","https://openalex.org/W4212774754","https://openalex.org/W4245927187"],"related_works":["https://openalex.org/W4380075502","https://openalex.org/W4375867731","https://openalex.org/W43109613","https://openalex.org/W3162204513","https://openalex.org/W3000197790","https://openalex.org/W2371138613","https://openalex.org/W2359952343","https://openalex.org/W2239445980","https://openalex.org/W2080152487","https://openalex.org/W2048963458"],"abstract_inverted_index":{"Deep":[0],"learning":[1,84],"models":[2,20],"have":[3],"a":[4,22,58,147,153],"large":[5],"number":[6],"of":[7,18,25,46,70,82,97,123,159],"free":[8],"parameters":[9],"that":[10],"need":[11],"to":[12,28,49],"be":[13],"calculated":[14],"by":[15],"effective":[16],"training":[17,26],"the":[19,47,80,95,98,121,128,140,157,167],"on":[21,61,166],"great":[23],"deal":[24],"data":[27,34],"improve":[29,139],"their":[30],"generalization":[31],"performance.":[32,168],"However,":[33],"obtaining":[35],"and":[36,75,108,150],"labeling":[37],"is":[38,44,100,115,146,152],"expensive":[39],"in":[40,161],"practice.":[41],"Data":[42],"augmentation":[43,67,113],"one":[45,135,144],"methods":[48,126,160],"alleviate":[50],"this":[51,54],"problem.":[52],"In":[53],"paper,":[55],"we":[56],"conduct":[57],"preliminary":[59],"study":[60,89],"how":[62],"four":[63],"variables":[64],"(augmentation":[65],"method,":[66,137],"rate,":[68],"size":[69],"basic":[71],"dataset":[72],"per":[73],"label,":[74],"method":[76,145,149],"combination)":[77],"can":[78],"affect":[79],"accuracy":[81],"deep":[83],"for":[85,118],"image":[86],"classification.":[87],"The":[88],"provides":[90],"some":[91],"guidelines:":[92],"(1)":[93],"altering":[94],"geometry":[96,125,154],"images":[99],"not":[101],"always":[102],"better":[103],"than":[104],"those":[105],"just":[106],"lighting":[107],"color.":[109],"(2)":[110],"2-3":[111],"times":[112],"rate":[114],"good":[116],"enough":[117],"training.":[119],"(3)":[120],"combination":[122,162],"two":[124],"degrade":[127],"performance,":[129,141],"while":[130],"combinations":[131],"with":[132],"at":[133],"least":[134],"photometric":[136,148],"will":[138],"especially":[142],"when":[143],"another":[151],"method.":[155],"(4)":[156],"sequence":[158],"has":[163],"little":[164],"effect":[165]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2981595078","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":11},{"year":2020,"cited_by_count":9},{"year":2019,"cited_by_count":2}],"updated_date":"2024-12-13T06:32:01.200677","created_date":"2019-11-01"}