{"id":"https://openalex.org/W2983456292","doi":"https://doi.org/10.1145/3347449.3357485","title":"AI for Audience Prediction and Profiling to Power Innovative TV Content Recommendation Services","display_name":"AI for Audience Prediction and Profiling to Power Innovative TV Content Recommendation Services","publication_year":2019,"publication_date":"2019-10-21","ids":{"openalex":"https://openalex.org/W2983456292","doi":"https://doi.org/10.1145/3347449.3357485","mag":"2983456292"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3347449.3357485","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://zenodo.org/records/3404798/files/AI4TV%20prediction%20ReTV.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5050296842","display_name":"Lyndon Nixon","orcid":"https://orcid.org/0000-0001-7091-4543"},"institutions":[{"id":"https://openalex.org/I150545927","display_name":"MODUL University Vienna","ror":"https://ror.org/04v2brz27","country_code":"AT","type":"education","lineage":["https://openalex.org/I150545927"]}],"countries":["AT"],"is_corresponding":false,"raw_author_name":"Lyndon Nixon","raw_affiliation_strings":["MODUL Technology GmbH, Vienna, Austria"],"affiliations":[{"raw_affiliation_string":"MODUL Technology GmbH, Vienna, Austria","institution_ids":["https://openalex.org/I150545927"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5001834794","display_name":"Krzysztof Ciesielski","orcid":"https://orcid.org/0000-0001-8887-3049"},"institutions":[],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Krzysztof Ciesielski","raw_affiliation_strings":["Genistat AG & ICS PAS, Z\u00fcrich, Switzerland"],"affiliations":[{"raw_affiliation_string":"Genistat AG & ICS PAS, Z\u00fcrich, Switzerland","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5091103687","display_name":"Basil Philipp","orcid":null},"institutions":[{"id":"https://openalex.org/I2799341698","display_name":"Genedata (Switzerland)","ror":"https://ror.org/01yzrt577","country_code":"CH","type":"company","lineage":["https://openalex.org/I2799341698"]}],"countries":["CH"],"is_corresponding":false,"raw_author_name":"Basil Philipp","raw_affiliation_strings":["Genistat AG, Z\u00fcrich, Switzerland"],"affiliations":[{"raw_affiliation_string":"Genistat AG, Z\u00fcrich, Switzerland","institution_ids":["https://openalex.org/I2799341698"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.849,"has_fulltext":false,"cited_by_count":7,"citation_normalized_percentile":{"value":0.807063,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":null,"issue":null,"first_page":"42","last_page":"48"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection Techniques and Applications","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10799","display_name":"Data Visualization and Analytics","score":0.9969,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Time Series Analysis and Forecasting","score":0.9904,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/profiling","display_name":"Profiling (computer programming)","score":0.8135771},{"id":"https://openalex.org/keywords/factoring","display_name":"Factoring","score":0.5757017},{"id":"https://openalex.org/keywords/target-audience","display_name":"Target audience","score":0.4809336}],"concepts":[{"id":"https://openalex.org/C187191949","wikidata":"https://www.wikidata.org/wiki/Q1138496","display_name":"Profiling (computer programming)","level":2,"score":0.8135771},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7409822},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.71529037},{"id":"https://openalex.org/C177225278","wikidata":"https://www.wikidata.org/wiki/Q192674","display_name":"Factoring","level":2,"score":0.5757017},{"id":"https://openalex.org/C2781286702","wikidata":"https://www.wikidata.org/wiki/Q2604680","display_name":"Target audience","level":2,"score":0.4809336},{"id":"https://openalex.org/C49774154","wikidata":"https://www.wikidata.org/wiki/Q131765","display_name":"Multimedia","level":1,"score":0.4061455},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.32598513},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.21991661},{"id":"https://openalex.org/C112698675","wikidata":"https://www.wikidata.org/wiki/Q37038","display_name":"Advertising","level":1,"score":0.1415813},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.0},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3347449.3357485","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://zenodo.org/record/3404798","pdf_url":"https://zenodo.org/records/3404798/files/AI4TV%20prediction%20ReTV.pdf","source":{"id":"https://openalex.org/S4306400562","display_name":"Zenodo (CERN European Organization for Nuclear Research)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I67311998","host_organization_name":"European Organization for Nuclear Research","host_organization_lineage":["https://openalex.org/I67311998"],"host_organization_lineage_names":["European Organization for Nuclear Research"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://zenodo.org/record/3404798","pdf_url":"https://zenodo.org/records/3404798/files/AI4TV%20prediction%20ReTV.pdf","source":{"id":"https://openalex.org/S4306400562","display_name":"Zenodo (CERN European Organization for Nuclear Research)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I67311998","host_organization_name":"European Organization for Nuclear Research","host_organization_lineage":["https://openalex.org/I67311998"],"host_organization_lineage_names":["European Organization for Nuclear Research"],"type":"repository"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.4,"id":"https://metadata.un.org/sdg/9"}],"grants":[{"funder":"https://openalex.org/F4320338475","funder_display_name":"H2020 LEIT Information and Communication Technologies","award_id":"780656"}],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1928104311","https://openalex.org/W1971800772","https://openalex.org/W1998247665","https://openalex.org/W2109956097","https://openalex.org/W2118718620","https://openalex.org/W2122646361","https://openalex.org/W2167152259","https://openalex.org/W2252073611","https://openalex.org/W2497584909","https://openalex.org/W2509235963","https://openalex.org/W4238769381","https://openalex.org/W4399577043"],"related_works":["https://openalex.org/W3010132509","https://openalex.org/W2997214518","https://openalex.org/W2963853167","https://openalex.org/W2947911821","https://openalex.org/W2944757884","https://openalex.org/W2594575493","https://openalex.org/W2393473966","https://openalex.org/W2377710379","https://openalex.org/W2366592368","https://openalex.org/W2260256814"],"abstract_inverted_index":{"In":[0,25],"contemporary":[1],"TV":[2,44,60,73],"audience":[3,35,74,86,100],"prediction,":[4],"outliers":[5,57],"are":[6],"considered":[7],"mere":[8],"anomalies":[9],"in":[10,37],"the":[11,26,54,64,82,85],"otherwise":[12],"cyclical":[13],"trend":[14],"and":[15,58,63],"seasonality":[16],"components":[17],"that":[18],"can":[19,80],"be":[20,96],"used":[21],"to":[22,31,39,102],"make":[23],"predictions.":[24],"ReTV":[27],"project,":[28],"we":[29,89],"want":[30],"provide":[32],"more":[33],"accurate":[34],"predictions":[36],"order":[38],"enable":[40],"innovative":[41],"services":[42],"for":[43,52,71],"content":[45,61,105],"recommendation.":[46],"This":[47],"paper":[48],"presents":[49],"a":[50],"concept":[51],"identifying":[53],"source":[55],"of":[56,66,84],"factoring":[59],"categories":[62],"occurrence":[65],"events":[67],"as":[68],"additional":[69],"features":[70],"training":[72],"prediction.":[75,87],"We":[76],"show":[77],"how":[78,91],"this":[79,92],"improve":[81],"accuracy":[83],"Finally,":[88],"outline":[90],"work":[93],"could":[94],"also":[95],"combined":[97],"with":[98],"AI-enabled":[99],"profiling":[101],"power":[103],"new":[104],"recommendation":[106],"services.":[107]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2983456292","counts_by_year":[{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":1}],"updated_date":"2025-01-08T13:59:18.795359","created_date":"2019-11-22"}