{"id":"https://openalex.org/W2973949214","doi":"https://doi.org/10.1145/3345252.3345264","title":"A Wavelet approach to extract main features from indirect immunofluorescence images","display_name":"A Wavelet approach to extract main features from indirect immunofluorescence images","publication_year":2019,"publication_date":"2019-06-21","ids":{"openalex":"https://openalex.org/W2973949214","doi":"https://doi.org/10.1145/3345252.3345264","mag":"2973949214"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3345252.3345264","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5054103572","display_name":"Riccardo Di Palermo","orcid":null},"institutions":[{"id":"https://openalex.org/I900890020","display_name":"University of Palermo","ror":"https://ror.org/044k9ta02","country_code":"IT","type":"education","lineage":["https://openalex.org/I900890020"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Riccardo Di Palermo","raw_affiliation_strings":["University of Palermo, Palermo, Italy"],"affiliations":[{"raw_affiliation_string":"University of Palermo, Palermo, Italy","institution_ids":["https://openalex.org/I900890020"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5004146628","display_name":"Donato Cascio","orcid":"https://orcid.org/0000-0001-6522-1259"},"institutions":[{"id":"https://openalex.org/I900890020","display_name":"University of Palermo","ror":"https://ror.org/044k9ta02","country_code":"IT","type":"education","lineage":["https://openalex.org/I900890020"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Donato Cascio","raw_affiliation_strings":["Department of Physics and Chemistry, University of Palermo, Palermo, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Physics and Chemistry, University of Palermo, Palermo, Italy","institution_ids":["https://openalex.org/I900890020"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5085510904","display_name":"G. Raso","orcid":"https://orcid.org/0000-0002-5660-3711"},"institutions":[{"id":"https://openalex.org/I900890020","display_name":"University of Palermo","ror":"https://ror.org/044k9ta02","country_code":"IT","type":"education","lineage":["https://openalex.org/I900890020"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Giuseppe Raso","raw_affiliation_strings":["Department of Physics and Chemistry, University of Palermo, Palermo, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Physics and Chemistry, University of Palermo, Palermo, Italy","institution_ids":["https://openalex.org/I900890020"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5015382861","display_name":"Domenico Tegolo","orcid":"https://orcid.org/0000-0001-5417-5584"},"institutions":[{"id":"https://openalex.org/I900890020","display_name":"University of Palermo","ror":"https://ror.org/044k9ta02","country_code":"IT","type":"education","lineage":["https://openalex.org/I900890020"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Domenico Tegolo","raw_affiliation_strings":["Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics and Computer Science, University of Palermo, Palermo, Italy","institution_ids":["https://openalex.org/I900890020"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"180","last_page":"187"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10052","display_name":"Medical Image Segmentation Techniques","score":0.9762,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10727","display_name":"Ultrasound Imaging and Elastography","score":0.9676,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.7298593}],"concepts":[{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.7298593},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.70016396},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.68898016},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.68253505},{"id":"https://openalex.org/C47432892","wikidata":"https://www.wikidata.org/wiki/Q831390","display_name":"Wavelet","level":2,"score":0.6505165},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.6341901},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.5592447},{"id":"https://openalex.org/C196216189","wikidata":"https://www.wikidata.org/wiki/Q2867","display_name":"Wavelet transform","level":3,"score":0.5373643},{"id":"https://openalex.org/C69738355","wikidata":"https://www.wikidata.org/wiki/Q1228929","display_name":"Linear discriminant analysis","level":2,"score":0.42308414},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.4135914},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.37730247},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3345252.3345264","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1759851510","https://openalex.org/W18275507","https://openalex.org/W1968668955","https://openalex.org/W1970063352","https://openalex.org/W1970303626","https://openalex.org/W1971251948","https://openalex.org/W1972399037","https://openalex.org/W1987869189","https://openalex.org/W2008247864","https://openalex.org/W2018332268","https://openalex.org/W2030105367","https://openalex.org/W2036938870","https://openalex.org/W2066772157","https://openalex.org/W2073379126","https://openalex.org/W2094769840","https://openalex.org/W2097533751","https://openalex.org/W2137304315","https://openalex.org/W2141619730","https://openalex.org/W2167801685","https://openalex.org/W2183182206","https://openalex.org/W2214821121","https://openalex.org/W2239475530","https://openalex.org/W2256644899","https://openalex.org/W2263356438","https://openalex.org/W2335957243","https://openalex.org/W2576014699","https://openalex.org/W2589429765","https://openalex.org/W2601530120","https://openalex.org/W2755775369","https://openalex.org/W2782699274","https://openalex.org/W2795795428","https://openalex.org/W2898980849","https://openalex.org/W2905517584","https://openalex.org/W2963881378","https://openalex.org/W2992195937","https://openalex.org/W4231842606","https://openalex.org/W4233320248","https://openalex.org/W4249358183"],"related_works":["https://openalex.org/W4402452563","https://openalex.org/W2967867994","https://openalex.org/W2382174632","https://openalex.org/W2380744779","https://openalex.org/W2356150353","https://openalex.org/W2250488071","https://openalex.org/W2129959498","https://openalex.org/W2090763504","https://openalex.org/W2077021924","https://openalex.org/W2018643641"],"abstract_inverted_index":{"A":[0],"number":[1],"of":[2,52,62,67,77,108,128,162,171,189,195,197,203,215,227],"previous":[3],"studies":[4],"have":[5],"shown":[6],"that":[7,153,165,219],"IIF":[8,68,198],"image":[9,79],"analysis":[10,33,63,98,200],"requires":[11],"complex":[12,37],"and":[13,16,56,83,95,103,125,135,164,206],"sometimes":[14],"heterogeneous":[15],"diversified":[17],"methods.":[18],"Robust":[19],"solutions":[20],"can":[21],"be":[22,113,133],"proposed":[23],"but":[24],"they":[25],"need":[26],"to":[27,35,48,72,115,151,168,176],"orchestrate":[28],"several":[29],"methods":[30],"from":[31],"low-level":[32],"up":[34],"more":[36],"neural":[38],"networks":[39],"or":[40],"SVM":[41],"for":[42,64],"data":[43,147,199],"classification.":[44,85,96],"The":[45,187],"contribution":[46],"intends":[47],"highlight":[49],"the":[50,65,91,105,109,117,123,126,129,141,145,154,166,169,204,208,212],"versatility":[51],"Wavelet":[53],"Transform":[54],"(WT)":[55],"their":[57],"use":[58],"in":[59,70,90,140,192,207,224],"various":[60],"levels":[61,194,226],"classification":[66],"images":[69],"order":[71],"develop":[73],"a":[74,216],"system":[75],"capable":[76],"performing:":[78],"enhancement,":[80],"ROI":[81],"segmentation":[82,94,130],"object":[84],"Therefore,":[86],"WT":[87,183,191],"was":[88,138],"adopted":[89],"de-noise":[92],"section,":[93],"This":[97],"allows":[99],"frequencies":[100],"characterization":[101],"(low/high)":[102],"with":[104,156],"statistical":[106],"distributions":[107],"wavelet":[110],"coefficients":[111],"will":[112],"able":[114],"support":[116,182],"medical":[118],"diagnosis":[119],"process.":[120],"In":[121],"particular,":[122],"robustness":[124,202],"goodness":[127],"phase":[131],"must":[132],"highlighted":[134],"its":[136],"validation":[137,155],"reported":[139],"section":[142],"3.2.1.":[143],"From":[144],"depicted":[146],"it":[148],"is":[149,174],"possible":[150],"assert":[152],"ground":[157],"truths":[158],"produced":[159],"an":[160],"accuracy":[161],"90%":[163],"method,":[167,205],"best":[170],"our":[172],"knowledge,":[173],"superior":[175],"other":[177],"methods,":[178],"which":[179],"do":[180],"not":[181],"(see":[184],"Table":[185],"1).":[186],"advantage":[188],"using":[190],"all":[193,225],"abstraction":[196],"lies":[201],"rapid":[209],"understanding,":[210],"by":[211],"end":[213],"user,":[214],"single":[217],"method":[218],"shows":[220],"good":[221],"average":[222],"results":[223],"analysis.":[228]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2973949214","counts_by_year":[],"updated_date":"2024-12-10T23:18:46.425158","created_date":"2019-09-26"}