{"id":"https://openalex.org/W2955587980","doi":"https://doi.org/10.1145/3331184.3331374","title":"Training Streaming Factorization Machines with Alternating Least Squares","display_name":"Training Streaming Factorization Machines with Alternating Least Squares","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W2955587980","doi":"https://doi.org/10.1145/3331184.3331374","mag":"2955587980"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331374","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5031393216","display_name":"Xueyu Mao","orcid":"https://orcid.org/0000-0003-0076-7431"},"institutions":[{"id":"https://openalex.org/I86519309","display_name":"The University of Texas at Austin","ror":"https://ror.org/00hj54h04","country_code":"US","type":"education","lineage":["https://openalex.org/I86519309"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xueyu Mao","raw_affiliation_strings":["The University of Texas at Austin, Austin, TX, USA"],"affiliations":[{"raw_affiliation_string":"The University of Texas at Austin, Austin, TX, USA","institution_ids":["https://openalex.org/I86519309"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003506066","display_name":"Saayan Mitra","orcid":"https://orcid.org/0000-0002-4048-2142"},"institutions":[{"id":"https://openalex.org/I1306409833","display_name":"Adobe Systems (United States)","ror":"https://ror.org/059tvcg64","country_code":"US","type":"company","lineage":["https://openalex.org/I1306409833"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Saayan Mitra","raw_affiliation_strings":["Adobe Research, San Jose, CA, USA"],"affiliations":[{"raw_affiliation_string":"Adobe Research, San Jose, CA, USA","institution_ids":["https://openalex.org/I1306409833"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100359839","display_name":"Sheng Li","orcid":"https://orcid.org/0000-0003-1205-8632"},"institutions":[{"id":"https://openalex.org/I165733156","display_name":"University of Georgia","ror":"https://ror.org/00te3t702","country_code":"US","type":"education","lineage":["https://openalex.org/I165733156"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Sheng Li","raw_affiliation_strings":["University of Georgia, Athens, GA, USA"],"affiliations":[{"raw_affiliation_string":"University of Georgia, Athens, GA, USA","institution_ids":["https://openalex.org/I165733156"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"1185","last_page":"1188"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Data Stream Mining Techniques","score":0.9956,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9896,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robustness","display_name":"Robustness","score":0.7215777},{"id":"https://openalex.org/keywords/stochastic-gradient-descent","display_name":"Stochastic Gradient Descent","score":0.62883955},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.5222883}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.84432405},{"id":"https://openalex.org/C63479239","wikidata":"https://www.wikidata.org/wiki/Q7353546","display_name":"Robustness (evolution)","level":3,"score":0.7215777},{"id":"https://openalex.org/C206688291","wikidata":"https://www.wikidata.org/wiki/Q7617819","display_name":"Stochastic gradient descent","level":3,"score":0.62883955},{"id":"https://openalex.org/C187834632","wikidata":"https://www.wikidata.org/wiki/Q188804","display_name":"Factorization","level":2,"score":0.5408739},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.5222883},{"id":"https://openalex.org/C2777211547","wikidata":"https://www.wikidata.org/wiki/Q17141490","display_name":"Training (meteorology)","level":2,"score":0.50447476},{"id":"https://openalex.org/C115537543","wikidata":"https://www.wikidata.org/wiki/Q165596","display_name":"Cache","level":2,"score":0.48340455},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4512996},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.43337014},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32975775},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.2504053},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.14912286},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.13290817},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C153294291","wikidata":"https://www.wikidata.org/wiki/Q25261","display_name":"Meteorology","level":1,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331374","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.58}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W1970108708","https://openalex.org/W2002834872","https://openalex.org/W2034466462","https://openalex.org/W2094286023","https://openalex.org/W2295739661","https://openalex.org/W2341865734","https://openalex.org/W2470457291","https://openalex.org/W2509235963","https://openalex.org/W2514817908","https://openalex.org/W2604662567","https://openalex.org/W2740885325","https://openalex.org/W2782494302","https://openalex.org/W2788401571","https://openalex.org/W2899129884","https://openalex.org/W2963323306"],"related_works":["https://openalex.org/W4385609682","https://openalex.org/W2963117165","https://openalex.org/W2950281908","https://openalex.org/W2794559785","https://openalex.org/W2770593030","https://openalex.org/W2583828359","https://openalex.org/W2152099439","https://openalex.org/W2084977674","https://openalex.org/W2013873776","https://openalex.org/W1754499339"],"abstract_inverted_index":{"Factorization":[0],"Machines":[1],"(FM)":[2],"have":[3],"been":[4],"widely":[5],"applied":[6],"in":[7,17,41],"industrial":[8],"applications":[9],"for":[10,59,122],"recommendations.":[11],"Traditionally":[12],"FM":[13,60],"models":[14],"are":[15],"trained":[16],"batch":[18,74],"mode,":[19],"which":[20,68,119],"entails":[21],"training":[22,34,57,75,100,107],"the":[23,38,62,84,88,99,131],"model":[24,85],"with":[25,44,61,72],"large":[26,45,127],"datasets":[27,129],"every":[28],"few":[29],"hours":[30],"or":[31],"days.":[32],"Such":[33],"procedure":[35],"cannot":[36],"capture":[37],"trends":[39],"evolving":[40],"real":[42],"time":[43],"volume":[46],"of":[47,90,135],"streaming":[48],"data.":[49],"In":[50],"this":[51],"paper,":[52],"we":[53],"propose":[54],"an":[55,79],"online":[56,80,106],"scheme":[58],"alternating":[63],"least":[64],"squares":[65],"(ALS)":[66],"technique,":[67],"has":[69],"comparable":[70],"performance":[71],"existing":[73],"algorithms.":[76],"We":[77],"incorporate":[78],"update":[81],"mechanism":[82,96],"to":[83],"parameters":[86],"at":[87],"cost":[89],"storing":[91],"a":[92,104],"small":[93],"cache.":[94],"The":[95],"also":[97],"stabilizes":[98],"error":[101],"more":[102],"than":[103],"traditional":[105],"technique":[108],"like":[109],"stochastic":[110],"gradient":[111],"descent":[112],"(SGD)":[113],"as":[114],"data":[115],"points":[116],"come":[117],"in,":[118],"is":[120],"crucial":[121],"real-time":[123],"applications.":[124],"Experiments":[125],"on":[126],"scale":[128],"validate":[130],"efficiency":[132],"and":[133],"robustness":[134],"our":[136],"method.":[137]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2955587980","counts_by_year":[],"updated_date":"2024-12-10T00:48:16.252096","created_date":"2019-07-12"}