{"id":"https://openalex.org/W2953873732","doi":"https://doi.org/10.1145/3331184.3331367","title":"Modeling Transferable Topics for Cross-Target Stance Detection","display_name":"Modeling Transferable Topics for Cross-Target Stance Detection","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W2953873732","doi":"https://doi.org/10.1145/3331184.3331367","mag":"2953873732"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331367","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5059038918","display_name":"Penghui Wei","orcid":"https://orcid.org/0000-0002-8701-9833"},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Penghui Wei","raw_affiliation_strings":["Institution of Automation, Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institution of Automation, Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I19820366"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5035983004","display_name":"Wenji Mao","orcid":"https://orcid.org/0000-0003-2323-5091"},"institutions":[{"id":"https://openalex.org/I19820366","display_name":"Chinese Academy of Sciences","ror":"https://ror.org/034t30j35","country_code":"CN","type":"government","lineage":["https://openalex.org/I19820366"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenji Mao","raw_affiliation_strings":["Institution of Automation, Chinese Academy of Sciences, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Institution of Automation, Chinese Academy of Sciences, Beijing, China","institution_ids":["https://openalex.org/I19820366"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.688,"has_fulltext":false,"cited_by_count":54,"citation_normalized_percentile":{"value":0.842408,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":"1173","last_page":"1176"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Automatic Keyword Extraction from Textual Data","score":0.9877,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/leverage","display_name":"Leverage (statistics)","score":0.68157154},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.6236596},{"id":"https://openalex.org/keywords/topic-modeling","display_name":"Topic Modeling","score":0.615481},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.56123734},{"id":"https://openalex.org/keywords/multi-label-learning","display_name":"Multi-label Learning","score":0.542849},{"id":"https://openalex.org/keywords/intuition","display_name":"Intuition","score":0.5393517},{"id":"https://openalex.org/keywords/aspect-based-sentiment-analysis","display_name":"Aspect-based Sentiment Analysis","score":0.510913},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep neural networks","score":0.4106508}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75299245},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.70455056},{"id":"https://openalex.org/C153083717","wikidata":"https://www.wikidata.org/wiki/Q6535263","display_name":"Leverage (statistics)","level":2,"score":0.68157154},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.653821},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6497542},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.6236596},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.5831315},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.56123734},{"id":"https://openalex.org/C132010649","wikidata":"https://www.wikidata.org/wiki/Q189222","display_name":"Intuition","level":2,"score":0.5393517},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.4106508},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.3101067},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.083975315},{"id":"https://openalex.org/C188147891","wikidata":"https://www.wikidata.org/wiki/Q147638","display_name":"Cognitive science","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331367","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.66,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":20,"referenced_works":["https://openalex.org/W1880262756","https://openalex.org/W1959608418","https://openalex.org/W2098420572","https://openalex.org/W2337875011","https://openalex.org/W2460159515","https://openalex.org/W2578446670","https://openalex.org/W2621133045","https://openalex.org/W2798367316","https://openalex.org/W2798491376","https://openalex.org/W2891585127","https://openalex.org/W2892202790","https://openalex.org/W2951008357","https://openalex.org/W2952478253","https://openalex.org/W2962707223","https://openalex.org/W2962795929","https://openalex.org/W2962992635","https://openalex.org/W2963811339","https://openalex.org/W2963826681","https://openalex.org/W2963961878","https://openalex.org/W3099233101"],"related_works":["https://openalex.org/W4313346231","https://openalex.org/W4298079292","https://openalex.org/W4285785480","https://openalex.org/W3203790781","https://openalex.org/W3093978547","https://openalex.org/W3080754722","https://openalex.org/W2997056298","https://openalex.org/W2953536436","https://openalex.org/W2950183588","https://openalex.org/W2738001131"],"abstract_inverted_index":{"Targeted":[0],"stance":[1,67],"detection":[2],"aims":[3],"to":[4,32,76,83,101,112,134,147],"classify":[5],"the":[6,33,39,63,95,132,148],"attitude":[7],"of":[8,65,72,98],"an":[9,92],"opinionated":[10],"text":[11],"towards":[12],"a":[13,55,73,84],"pre-defined":[14],"target.":[15,35,86],"Previous":[16],"methods":[17],"mainly":[18],"focus":[19],"on":[20],"in-target":[21],"setting":[22],"that":[23,79,130,141],"models":[24,78],"are":[25],"trained":[26],"and":[27,125],"tested":[28],"using":[29],"data":[30,71],"specific":[31],"same":[34],"In":[36,58],"practical":[37],"cases,":[38],"target":[40,75],"we":[41,61,90],"concern":[42],"may":[43],"have":[44],"few":[45],"or":[46],"no":[47],"labeled":[48,70],"data,":[49],"which":[50,99],"restrains":[51],"us":[52],"from":[53],"training":[54,129],"target-specific":[56],"model.":[57],"this":[59,88],"paper":[60],"study":[62],"problem":[64],"cross-target":[66],"detection,":[68],"utilizing":[69],"source":[74],"learn":[77,135],"can":[80],"be":[81],"adapted":[82],"destination":[85],"To":[87],"end,":[89],"propose":[91],"effective":[93],"method,":[94],"core":[96],"intuition":[97],"is":[100,145],"leverage":[102],"shared":[103],"latent":[104],"topics":[105],"between":[106],"two":[107],"targets":[108],"as":[109],"transferable":[110],"knowledge":[111,120],"facilitate":[113],"model":[114,133],"adaptation.":[115],"Our":[116],"method":[117,144],"acquires":[118],"topic":[119],"with":[121],"neural":[122],"variational":[123],"inference,":[124],"further":[126],"adopts":[127],"adversarial":[128],"encourages":[131],"target-invariant":[136],"representations.":[137],"Experimental":[138],"results":[139],"verify":[140],"our":[142],"proposed":[143],"superior":[146],"state-of-the-art":[149],"methods.":[150]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2953873732","counts_by_year":[{"year":2024,"cited_by_count":10},{"year":2023,"cited_by_count":20},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":12},{"year":2020,"cited_by_count":4}],"updated_date":"2024-11-30T13:34:54.023398","created_date":"2019-07-12"}