{"id":"https://openalex.org/W2955727475","doi":"https://doi.org/10.1145/3331184.3331365","title":"Neural Compatibility Ranking for Text-based Fashion Matching","display_name":"Neural Compatibility Ranking for Text-based Fashion Matching","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W2955727475","doi":"https://doi.org/10.1145/3331184.3331365","mag":"2955727475"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331365","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003172820","display_name":"Suthee Chaidaroon","orcid":"https://orcid.org/0000-0002-3655-5708"},"institutions":[{"id":"https://openalex.org/I16269868","display_name":"Santa Clara University","ror":"https://ror.org/03ypqe447","country_code":"US","type":"education","lineage":["https://openalex.org/I16269868"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"SUTHEE CHAIDAROON","raw_affiliation_strings":["Santa Clara University, Santa Clara, CA, USA"],"affiliations":[{"raw_affiliation_string":"Santa Clara University, Santa Clara, CA, USA","institution_ids":["https://openalex.org/I16269868"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101972978","display_name":"Yi Fang","orcid":"https://orcid.org/0000-0001-6572-4315"},"institutions":[{"id":"https://openalex.org/I16269868","display_name":"Santa Clara University","ror":"https://ror.org/03ypqe447","country_code":"US","type":"education","lineage":["https://openalex.org/I16269868"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yi Fang","raw_affiliation_strings":["Santa Clara University, Santa Clara, CA, USA"],"affiliations":[{"raw_affiliation_string":"Santa Clara University, Santa Clara, CA, USA","institution_ids":["https://openalex.org/I16269868"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5031241828","display_name":"Min Xie","orcid":"https://orcid.org/0000-0003-2356-782X"},"institutions":[{"id":"https://openalex.org/I1330693074","display_name":"Walmart (United States)","ror":"https://ror.org/04j0gge90","country_code":"US","type":"company","lineage":["https://openalex.org/I1330693074"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Min Xie","raw_affiliation_strings":["Walmart Labs, Sunnyvale, CA, USA"],"affiliations":[{"raw_affiliation_string":"Walmart Labs, Sunnyvale, CA, USA","institution_ids":["https://openalex.org/I1330693074"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018684508","display_name":"Alessandro Magnani","orcid":"https://orcid.org/0000-0001-6719-7467"},"institutions":[{"id":"https://openalex.org/I1330693074","display_name":"Walmart (United States)","ror":"https://ror.org/04j0gge90","country_code":"US","type":"company","lineage":["https://openalex.org/I1330693074"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Alessandro Magnani","raw_affiliation_strings":["Walmart Labs, Sunnyvale, CA, USA"],"affiliations":[{"raw_affiliation_string":"Walmart Labs, Sunnyvale, CA, USA","institution_ids":["https://openalex.org/I1330693074"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.406,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":10,"citation_normalized_percentile":{"value":0.841835,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":null,"issue":null,"first_page":"1229","last_page":"1232"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks in Image Processing","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10775","display_name":"Generative Adversarial Networks in Image Processing","score":0.9991,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Shape Matching and Object Recognition","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11448","display_name":"Face Recognition and Analysis Techniques","score":0.9887,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/shape-matching","display_name":"Shape Matching","score":0.575118},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature Learning","score":0.527343},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.507158},{"id":"https://openalex.org/keywords/comparability","display_name":"Comparability","score":0.41962636}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7905213},{"id":"https://openalex.org/C2778648169","wikidata":"https://www.wikidata.org/wiki/Q967768","display_name":"Compatibility (geochemistry)","level":2,"score":0.7330398},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.5746419},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.5203366},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.5057502},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4346115},{"id":"https://openalex.org/C197947376","wikidata":"https://www.wikidata.org/wiki/Q5155608","display_name":"Comparability","level":2,"score":0.41962636},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.37227497},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34798273},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3287506},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.09672016},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.072335064},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C42360764","wikidata":"https://www.wikidata.org/wiki/Q83588","display_name":"Chemical engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331365","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1614298861","https://openalex.org/W2027731328","https://openalex.org/W2136189984","https://openalex.org/W2136542423","https://openalex.org/W2150886314","https://openalex.org/W2155482025","https://openalex.org/W2221507685","https://openalex.org/W2250539671","https://openalex.org/W2648699835","https://openalex.org/W2767109396","https://openalex.org/W3099462466","https://openalex.org/W3100153382","https://openalex.org/W4240913316","https://openalex.org/W4252076394"],"related_works":["https://openalex.org/W4390295458","https://openalex.org/W4287902769","https://openalex.org/W3021704418","https://openalex.org/W3001140700","https://openalex.org/W2995453361","https://openalex.org/W2575292835","https://openalex.org/W2365594754","https://openalex.org/W2092282998","https://openalex.org/W2053982300","https://openalex.org/W1990407237"],"abstract_inverted_index":{"When":[0],"shopping":[1],"for":[2,7,45,110],"fashion,":[3],"customers":[4,17],"often":[5],"look":[6],"products":[8,48],"which":[9,23,77,107,149],"can":[10,24],"complement":[11],"their":[12,28],"current":[13],"outfit.":[14,57],"For":[15],"example,":[16],"want":[18],"to":[19,131,141],"buy":[20],"a":[21,41,119],"jacket":[22],"go":[25],"well":[26],"with":[27,54],"jeans":[29],"and":[30,102,124],"sneakers.":[31],"To":[32],"address":[33],"the":[34,51,55,84,126,132,136,143,151,156],"task":[35],"of":[36,60,99,106],"fashion":[37,47,111,121,160],"matching,":[38],"we":[39,66,88,139],"propose":[40],"neural":[42],"compatibility":[43,52],"model":[44,115,144],"ranking":[46],"based":[49],"on":[50,118,159],"matching":[53,101,104],"input":[56],"The":[58,113],"contribution":[59],"our":[61],"work":[62,158],"is":[63,116],"twofold.":[64],"First,":[65],"demonstrate":[67],"that":[68],"product":[69,75,147],"descriptions":[70],"contain":[71],"rich":[72],"information":[73,92],"about":[74],"comparability":[76],"has":[78],"not":[79],"been":[80],"fully":[81],"utilized":[82],"in":[83,155],"prior":[85,157],"work.":[86],"Secondly,":[87],"exploit":[89],"such":[90],"useful":[91],"from":[93],"text":[94],"data":[95,153],"by":[96,129,145],"taking":[97],"advantages":[98],"semantic":[100],"lexical":[103],"both":[105],"are":[108,150],"important":[109],"matching.":[112,161],"proposed":[114],"evaluated":[117],"real-world":[120],"outfit":[122],"dataset":[123],"achieves":[125],"state-of-the-art":[127],"results":[128],"comparing":[130],"competitive":[133],"baselines.":[134],"In":[135],"future":[137],"work,":[138],"plan":[140],"extend":[142],"incorporating":[146],"images":[148],"major":[152],"source":[154]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2955727475","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":1}],"updated_date":"2024-11-30T13:59:26.618352","created_date":"2019-07-12"}