{"id":"https://openalex.org/W2956109605","doi":"https://doi.org/10.1145/3331184.3331360","title":"Sparse Tensor Co-clustering as a Tool for Document Categorization","display_name":"Sparse Tensor Co-clustering as a Tool for Document Categorization","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W2956109605","doi":"https://doi.org/10.1145/3331184.3331360","mag":"2956109605"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331360","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5077793498","display_name":"Rafika Boutalbi","orcid":"https://orcid.org/0000-0002-5884-2898"},"institutions":[{"id":"https://openalex.org/I204730241","display_name":"Universit\u00e9 Paris Cit\u00e9","ror":"https://ror.org/05f82e368","country_code":"FR","type":"education","lineage":["https://openalex.org/I204730241"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Rafika Boutalbi","raw_affiliation_strings":["University of Paris, Paris, France"],"affiliations":[{"raw_affiliation_string":"University of Paris, Paris, France","institution_ids":["https://openalex.org/I204730241"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000157816","display_name":"Lazhar Labiod","orcid":"https://orcid.org/0000-0001-8641-8050"},"institutions":[{"id":"https://openalex.org/I204730241","display_name":"Universit\u00e9 Paris Cit\u00e9","ror":"https://ror.org/05f82e368","country_code":"FR","type":"education","lineage":["https://openalex.org/I204730241"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Lazhar Labiod","raw_affiliation_strings":["University of Paris, Paris, France"],"affiliations":[{"raw_affiliation_string":"University of Paris, Paris, France","institution_ids":["https://openalex.org/I204730241"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5007054746","display_name":"Mohamed Nadif","orcid":"https://orcid.org/0000-0002-0007-3950"},"institutions":[{"id":"https://openalex.org/I204730241","display_name":"Universit\u00e9 Paris Cit\u00e9","ror":"https://ror.org/05f82e368","country_code":"FR","type":"education","lineage":["https://openalex.org/I204730241"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Mohamed Nadif","raw_affiliation_strings":["University of Paris, Paris, France"],"affiliations":[{"raw_affiliation_string":"University of Paris, Paris, France","institution_ids":["https://openalex.org/I204730241"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.423,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.849162,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":79,"max":81},"biblio":{"volume":null,"issue":null,"first_page":"1157","last_page":"1160"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12303","display_name":"Tensor Decompositions and Applications in Multilinear Algebra","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12303","display_name":"Tensor Decompositions and Applications in Multilinear Algebra","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11269","display_name":"Text Compression and Indexing Algorithms","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10057","display_name":"Face Recognition and Dimensionality Reduction Techniques","score":0.9435,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/text-indexing","display_name":"Text Indexing","score":0.543297},{"id":"https://openalex.org/keywords/sparse-representations","display_name":"Sparse Representations","score":0.535311},{"id":"https://openalex.org/keywords/tensor-decomposition","display_name":"Tensor Decomposition","score":0.517544},{"id":"https://openalex.org/keywords/document-clustering","display_name":"Document clustering","score":0.51113206},{"id":"https://openalex.org/keywords/spectral-clustering","display_name":"Spectral Clustering","score":0.508826}],"concepts":[{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.7845861},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7474532},{"id":"https://openalex.org/C155281189","wikidata":"https://www.wikidata.org/wiki/Q3518150","display_name":"Tensor (intrinsic definition)","level":2,"score":0.6853299},{"id":"https://openalex.org/C94124525","wikidata":"https://www.wikidata.org/wiki/Q912550","display_name":"Categorization","level":2,"score":0.61823946},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.5317888},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.51988363},{"id":"https://openalex.org/C177937566","wikidata":"https://www.wikidata.org/wiki/Q4223102","display_name":"Document clustering","level":3,"score":0.51113206},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.41766158},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.33677143},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.1968556},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331360","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":12,"referenced_works":["https://openalex.org/W1963826206","https://openalex.org/W1974403130","https://openalex.org/W2049633694","https://openalex.org/W2097645701","https://openalex.org/W2109202835","https://openalex.org/W2144767994","https://openalex.org/W2434205482","https://openalex.org/W2597328883","https://openalex.org/W2612690371","https://openalex.org/W2923996791","https://openalex.org/W381842185","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W2963971601","https://openalex.org/W2941132005","https://openalex.org/W2282393731","https://openalex.org/W2184609164","https://openalex.org/W2184440854","https://openalex.org/W2121877219","https://openalex.org/W2086064646","https://openalex.org/W1538507885","https://openalex.org/W1530974422","https://openalex.org/W1504491975"],"abstract_inverted_index":{"To":[0,74],"deal":[1,50],"with":[2,51],"document":[3],"clustering,":[4],"we":[5,20,38,78],"usually":[6],"rely":[7],"on":[8,87],"document-term":[9],"matrices.":[10],"However,":[11],"from":[12,60],"additional":[13],"available":[14],"information":[15,58],"like":[16],"keywords,":[17],"co-authors,":[18],"citations":[19],"might":[21],"rather":[22],"exploit":[23],"a":[24,33,80],"reorganization":[25],"of":[26,32,42,72,95,103],"the":[27,30,40,43,76,93,100],"data":[28,54],"in":[29],"form":[31],"tensor.":[34],"In":[35],"this":[36,70],"paper,":[37],"extend":[39],"use":[41],"Sparse":[44],"Poisson":[45],"Latent":[46],"Block":[47],"Model":[48],"to":[49],"sparse":[52],"tensor":[53,82],"using":[55],"jointly":[56],"all":[57],"arising":[59],"documents.":[61,104],"The":[62],"proposed":[63],"model":[64],"is":[65],"parsimonious":[66],"and":[67],"tailored":[68],"for":[69],"kind":[71],"data.":[73],"estimate":[75],"parameters,":[77],"derive":[79],"suitable":[81],"co-clustering":[83],"algorithm.":[84],"Empirical":[85],"results":[86,102],"several":[88],"real-world":[89],"text":[90],"datasets":[91],"highlight":[92],"advantages":[94],"our":[96],"proposal":[97],"which":[98],"improves":[99],"clustering":[101]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2956109605","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":1}],"updated_date":"2024-11-30T15:33:37.080147","created_date":"2019-07-12"}