{"id":"https://openalex.org/W2963964631","doi":"https://doi.org/10.1145/3331184.3331349","title":"Name Entity Recognition with Policy-Value Networks","display_name":"Name Entity Recognition with Policy-Value Networks","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W2963964631","doi":"https://doi.org/10.1145/3331184.3331349","mag":"2963964631"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331349","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5003077496","display_name":"Yadi Lao","orcid":null},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yadi Lao","raw_affiliation_strings":["Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020766468","display_name":"Jun Xu","orcid":"https://orcid.org/0000-0001-7170-111X"},"institutions":[{"id":"https://openalex.org/I78988378","display_name":"Renmin University of China","ror":"https://ror.org/041pakw92","country_code":"CN","type":"education","lineage":["https://openalex.org/I78988378"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Xu","raw_affiliation_strings":["Renmin University of China, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Renmin University of China, Beijing, China","institution_ids":["https://openalex.org/I78988378"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101707899","display_name":"Sheng Gao","orcid":"https://orcid.org/0000-0003-1591-0595"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Sheng Gao","raw_affiliation_strings":["Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100445470","display_name":"Jun Guo","orcid":"https://orcid.org/0000-0001-9045-1339"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"education","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jun Guo","raw_affiliation_strings":["Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025631695","display_name":"Ji-Rong Wen","orcid":"https://orcid.org/0000-0002-9777-9676"},"institutions":[{"id":"https://openalex.org/I78988378","display_name":"Renmin University of China","ror":"https://ror.org/041pakw92","country_code":"CN","type":"education","lineage":["https://openalex.org/I78988378"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ji-Rong Wen","raw_affiliation_strings":["Renmin University of China, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Renmin University of China, Beijing, China","institution_ids":["https://openalex.org/I78988378"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":1,"citation_normalized_percentile":{"value":0.248969,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":62,"max":70},"biblio":{"volume":"12","issue":null,"first_page":"1245","last_page":"1248"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Statistical Machine Translation and Natural Language Processing","score":0.9987,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9874,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/named-entity-recognition","display_name":"Named Entity Recognition","score":0.66758},{"id":"https://openalex.org/keywords/neural-machine-translation","display_name":"Neural Machine Translation","score":0.537582},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.535499},{"id":"https://openalex.org/keywords/multilingual-neural-machine-translation","display_name":"Multilingual Neural Machine Translation","score":0.533118},{"id":"https://openalex.org/keywords/topic-modeling","display_name":"Topic Modeling","score":0.528377},{"id":"https://openalex.org/keywords/sequence-labeling","display_name":"Sequence labeling","score":0.4941819},{"id":"https://openalex.org/keywords/value","display_name":"Value (mathematics)","score":0.451314}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8127996},{"id":"https://openalex.org/C97541855","wikidata":"https://www.wikidata.org/wiki/Q830687","display_name":"Reinforcement learning","level":2,"score":0.71513265},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.7088865},{"id":"https://openalex.org/C2779135771","wikidata":"https://www.wikidata.org/wiki/Q403574","display_name":"Named-entity recognition","level":3,"score":0.70444316},{"id":"https://openalex.org/C106189395","wikidata":"https://www.wikidata.org/wiki/Q176789","display_name":"Markov decision process","level":3,"score":0.6635557},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.56741655},{"id":"https://openalex.org/C35639132","wikidata":"https://www.wikidata.org/wiki/Q7452468","display_name":"Sequence labeling","level":3,"score":0.4941819},{"id":"https://openalex.org/C2776291640","wikidata":"https://www.wikidata.org/wiki/Q2912517","display_name":"Value (mathematics)","level":2,"score":0.451314},{"id":"https://openalex.org/C90805587","wikidata":"https://www.wikidata.org/wiki/Q10944557","display_name":"Word (group theory)","level":2,"score":0.4406646},{"id":"https://openalex.org/C84525736","wikidata":"https://www.wikidata.org/wiki/Q831366","display_name":"Decision tree","level":2,"score":0.4277205},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.41749275},{"id":"https://openalex.org/C159886148","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov process","level":2,"score":0.3570312},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.34465042},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.073889375},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331349","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.82,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1508054961","https://openalex.org/W1773803948","https://openalex.org/W1934019294","https://openalex.org/W1940872118","https://openalex.org/W2146502635","https://openalex.org/W2147880316","https://openalex.org/W2250539671","https://openalex.org/W2295030615","https://openalex.org/W2766447205","https://openalex.org/W2952840881","https://openalex.org/W2963625095"],"related_works":["https://openalex.org/W4399418584","https://openalex.org/W4321523623","https://openalex.org/W4287197350","https://openalex.org/W3161409692","https://openalex.org/W3047727388","https://openalex.org/W3036779180","https://openalex.org/W2945210837","https://openalex.org/W2589080577","https://openalex.org/W2530283981","https://openalex.org/W189110383"],"abstract_inverted_index":{"In":[0],"this":[1],"paper":[2],"we":[3,175],"propose":[4],"a":[5,37,60,76,156],"novel":[6],"reinforcement":[7,164],"learning":[8,165],"based":[9],"model":[10,172],"for":[11,104,112,160],"named":[12,33],"entity":[13,34],"recognition":[14,35],"(NER),":[15],"referred":[16],"to":[17,54,64,70,75,85,169,185],"as":[18,141],"MM-NER.":[19],"Inspired":[20],"by":[21,192],"the":[22,25,30,50,55,87,94,98,102,106,110,114,119,135,146,151,171,182,186,196,206],"methodology":[23],"of":[24,32,57,100,118],"AlphaGo":[26],"Zero,":[27],"MM-NER":[28,178],"formalizes":[29],"problem":[31],"with":[36,131,205],"Monte-Carlo":[38],"tree":[39],"search":[40,158],"(MCTS)":[41],"enhanced":[42],"Markov":[43],"decision":[44,188],"process":[45],"(MDP)":[46],"model,":[47],"in":[48,59,93],"which":[49,133],"time":[51],"steps":[52],"correspond":[53],"positions":[56],"words":[58,92],"sentence":[61,121],"from":[62],"left":[63],"right,":[65],"and":[66,91,109,126,139,144,154,201],"each":[67],"action":[68],"corresponds":[69],"assign":[71],"an":[72],"NER":[73],"tag":[74,89,107,148],"word.":[77],"Two":[78],"Gated":[79],"Recurrent":[80],"Units":[81],"(GRU)":[82],"are":[83,122,128],"used":[84],"summarize":[86],"past":[88],"assignments":[90,149],"sentence.":[95],"Based":[96],"on":[97],"outputs":[99,155],"GRUs,":[101],"policy":[103,125,138,159],"guiding":[105],"assignment":[108],"value":[111,127,140],"predicting":[113],"whole":[115,120],"tagging":[116,199],"accuracy":[117],"produced.":[123],"The":[124],"then":[129],"strengthened":[130],"MCTS,":[132],"takes":[134],"produced":[136],"raw":[137],"inputs,":[142],"simulates":[143],"evaluates":[145],"possible":[147],"at":[150],"subsequent":[152],"positions,":[153],"better":[157],"assigning":[161],"tags.":[162],"A":[163],"algorithm":[166],"is":[167],"proposed":[168],"train":[170],"parameters.":[173],"Empirically,":[174],"show":[176],"that":[177],"can":[179],"accurately":[180],"predict":[181],"tags":[183],"thanks":[184],"exploratory":[187],"making":[189],"mechanism":[190],"introduced":[191],"MCTS.":[193],"It":[194],"outperformed":[195],"conventional":[197],"sequence":[198],"baselines":[200],"performed":[202],"equally":[203],"well":[204],"state-of-the-art":[207],"baseline":[208],"BLSTM-CRF.":[209]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963964631","counts_by_year":[{"year":2023,"cited_by_count":1}],"updated_date":"2024-11-22T20:17:00.497624","created_date":"2019-07-30"}