{"id":"https://openalex.org/W4288280763","doi":"https://doi.org/10.1145/3331184.3331340","title":"Critically Examining the \"Neural Hype\"","display_name":"Critically Examining the \"Neural Hype\"","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W4288280763","doi":"https://doi.org/10.1145/3331184.3331340"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331340","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"preprint","type_crossref":"proceedings-article","indexed_in":["arxiv","crossref","datacite"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"https://arxiv.org/pdf/1904.09171","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101866601","display_name":"Wei Yang","orcid":"https://orcid.org/0000-0003-1266-048X"},"institutions":[{"id":"https://openalex.org/I151746483","display_name":"University of Waterloo","ror":"https://ror.org/01aff2v68","country_code":"CA","type":"education","lineage":["https://openalex.org/I151746483"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Wei Yang","raw_affiliation_strings":["University of Waterloo, Waterloo, ON, Canada"],"affiliations":[{"raw_affiliation_string":"University of Waterloo, Waterloo, ON, Canada","institution_ids":["https://openalex.org/I151746483"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5038344538","display_name":"Kuang Lu","orcid":null},"institutions":[{"id":"https://openalex.org/I86501945","display_name":"University of Delaware","ror":"https://ror.org/01sbq1a82","country_code":"US","type":"education","lineage":["https://openalex.org/I86501945"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kuang Lu","raw_affiliation_strings":["University of Delaware, Newark, DE, USA"],"affiliations":[{"raw_affiliation_string":"University of Delaware, Newark, DE, USA","institution_ids":["https://openalex.org/I86501945"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5108383811","display_name":"Peilin Yang","orcid":null},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Peilin Yang","raw_affiliation_strings":["No affiliation, San Francisco, CA, USA"],"affiliations":[{"raw_affiliation_string":"No affiliation, San Francisco, CA, USA","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5082997975","display_name":"Jimmy Lin","orcid":"https://orcid.org/0000-0002-0661-7189"},"institutions":[],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jimmy Lin","raw_affiliation_strings":["University of Waterloo, Waterloo, ON, USA"],"affiliations":[{"raw_affiliation_string":"University of Waterloo, Waterloo, ON, USA","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":null,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":68,"citation_normalized_percentile":{"value":0.999926,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10286","display_name":"Information Retrieval Techniques and Evaluation","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9881,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/skepticism","display_name":"Skepticism","score":0.8344169},{"id":"https://openalex.org/keywords/learning-to-rank","display_name":"Learning to Rank","score":0.539339},{"id":"https://openalex.org/keywords/meta-learning","display_name":"Meta-Learning","score":0.505332},{"id":"https://openalex.org/keywords/post-hoc","display_name":"Post hoc","score":0.4868202},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep neural networks","score":0.466191}],"concepts":[{"id":"https://openalex.org/C18296254","wikidata":"https://www.wikidata.org/wiki/Q1395219","display_name":"Skepticism","level":2,"score":0.8344169},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.7127065},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6766879},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5551512},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.53606695},{"id":"https://openalex.org/C2992886853","wikidata":"https://www.wikidata.org/wiki/Q18381816","display_name":"Post hoc","level":2,"score":0.4868202},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.466191},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.45795214},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.35166454},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.23911557},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.09087548},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C199343813","wikidata":"https://www.wikidata.org/wiki/Q12128","display_name":"Dentistry","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331340","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1904.09171","pdf_url":"https://arxiv.org/pdf/1904.09171","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"https://api.datacite.org/dois/10.48550/arxiv.1904.09171","pdf_url":null,"source":{"id":"https://openalex.org/S4393179698","display_name":"DataCite API","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I4210145204","host_organization_name":"DataCite","host_organization_lineage":["https://openalex.org/I4210145204"],"host_organization_lineage_names":["DataCite"],"type":"metadata"},"license":null,"license_id":null,"version":null}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1904.09171","pdf_url":"https://arxiv.org/pdf/1904.09171","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[{"score":0.57,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[{"funder":"https://openalex.org/F4320334593","funder_display_name":"Natural Sciences and Engineering Research Council of Canada","award_id":null}],"datasets":[],"versions":["https://openalex.org/W4288280763"],"referenced_works_count":21,"referenced_works":["https://openalex.org/W2006996936","https://openalex.org/W2055981215","https://openalex.org/W2117473841","https://openalex.org/W2136189984","https://openalex.org/W2148972377","https://openalex.org/W2186845332","https://openalex.org/W2265289447","https://openalex.org/W2410091547","https://openalex.org/W2515351093","https://openalex.org/W2536015822","https://openalex.org/W2538374209","https://openalex.org/W2539671052","https://openalex.org/W2585950056","https://openalex.org/W2648699835","https://openalex.org/W2745972258","https://openalex.org/W2899154813","https://openalex.org/W2910577570","https://openalex.org/W2963615308","https://openalex.org/W3102286003","https://openalex.org/W3103250468","https://openalex.org/W3121694563"],"related_works":["https://openalex.org/W653411598","https://openalex.org/W4389299324","https://openalex.org/W4324317499","https://openalex.org/W4288085532","https://openalex.org/W4240386019","https://openalex.org/W4230455549","https://openalex.org/W3196650632","https://openalex.org/W2501781772","https://openalex.org/W2082080254","https://openalex.org/W1273978728"],"abstract_inverted_index":{"Is":[0],"neural":[1,15,36,103,112,147],"IR":[2,37,148],"mostly":[3],"hype?":[4],"In":[5,89],"a":[6,49,61,97],"recent":[7,102,111],"SIGIR":[8],"Forum":[9],"article,":[10],"Lin":[11,120],"expressed":[12],"skepticism":[13],"that":[14,33,65,119],"ranking":[16],"models":[17,113],"were":[18],"actually":[19],"improving":[20],"ad":[21],"hoc":[22],"retrieval":[23],"effectiveness":[24,86],"in":[25,55,85,138,157],"limited":[26],"data":[27],"scenarios.":[28],"He":[29],"provided":[30],"anecdotal":[31],"evidence":[32,80],"authors":[34],"of":[35,52,63,81,133,153],"papers":[38,64],"demonstrate":[39],"\"wins\"":[40],"by":[41],"comparing":[42],"against":[43],"weak":[44],"baselines.":[45],"This":[46],"paper":[47],"provides":[48],"rigorous":[50],"evaluation":[51],"those":[53],"claims":[54],"two":[56],"ways:":[57],"First,":[58],"we":[59,108],"conducted":[60],"meta-analysis":[62],"have":[66],"reported":[67,93,156],"experimental":[68],"results":[69,94],"on":[70],"the":[71,91,116,134,154,158],"TREC":[72],"Robust04":[73],"test":[74],"collection.":[75],"We":[76],"do":[77],"not":[78],"find":[79],"an":[82],"upward":[83],"trend":[84],"over":[87],"time.":[88],"fact,":[90],"best":[92],"are":[95],"from":[96],"decade":[98],"ago":[99],"and":[100],"no":[101],"approach":[104],"comes":[105],"close.":[106],"Second,":[107],"applied":[109],"five":[110],"to":[114,122,143,146],"rerank":[115],"strong":[117],"baselines":[118],"used":[121],"make":[123],"his":[124],"arguments.":[125],"A":[126],"significant":[127],"improvement":[128],"was":[129],"observed":[130],"for":[131],"one":[132],"models,":[135],"demonstrating":[136],"additivity":[137],"gains.":[139],"While":[140],"there":[141],"appears":[142],"be":[144],"merit":[145],"approaches,":[149],"at":[150],"least":[151],"some":[152],"gains":[155],"literature":[159],"appear":[160],"illusory.":[161]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4288280763","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":10},{"year":2022,"cited_by_count":11},{"year":2021,"cited_by_count":19},{"year":2020,"cited_by_count":20},{"year":2019,"cited_by_count":4},{"year":2012,"cited_by_count":1}],"updated_date":"2024-11-26T22:57:56.454619","created_date":"2022-07-28"}