{"id":"https://openalex.org/W2953968544","doi":"https://doi.org/10.1145/3331184.3331330","title":"Deep Distribution Network","display_name":"Deep Distribution Network","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W2953968544","doi":"https://doi.org/10.1145/3331184.3331330","mag":"2953968544"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3331184.3331330","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3331184.3331330","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3331184.3331330","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101698631","display_name":"Lei Zheng","orcid":"https://orcid.org/0000-0002-9043-2506"},"institutions":[{"id":"https://openalex.org/I39422238","display_name":"University of Illinois Chicago","ror":"https://ror.org/02mpq6x41","country_code":"US","type":"education","lineage":["https://openalex.org/I39422238"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Lei Zheng","raw_affiliation_strings":["University of Illinois at Chicago, Chicago, IL, USA"],"affiliations":[{"raw_affiliation_string":"University of Illinois at Chicago, Chicago, IL, USA","institution_ids":["https://openalex.org/I39422238"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5037831162","display_name":"Chaozhuo Li","orcid":"https://orcid.org/0000-0002-9867-1712"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chaozhuo Li","raw_affiliation_strings":["Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5024393012","display_name":"Chun-Ta Lu","orcid":"https://orcid.org/0000-0001-8573-4975"},"institutions":[{"id":"https://openalex.org/I39422238","display_name":"University of Illinois Chicago","ror":"https://ror.org/02mpq6x41","country_code":"US","type":"education","lineage":["https://openalex.org/I39422238"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chun-Ta Lu","raw_affiliation_strings":["University of Illinois at Chicago, Chicago, IL, USA"],"affiliations":[{"raw_affiliation_string":"University of Illinois at Chicago, Chicago, IL, USA","institution_ids":["https://openalex.org/I39422238"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100462813","display_name":"Jiawei Zhang","orcid":"https://orcid.org/0000-0001-7393-710X"},"institutions":[{"id":"https://openalex.org/I103163165","display_name":"Florida State University","ror":"https://ror.org/05g3dte14","country_code":"US","type":"education","lineage":["https://openalex.org/I103163165"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jiawei Zhang","raw_affiliation_strings":["Florida State University, Tallahassee, FL, USA"],"affiliations":[{"raw_affiliation_string":"Florida State University, Tallahassee, FL, USA","institution_ids":["https://openalex.org/I103163165"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5036357902","display_name":"Philip S. Yu","orcid":"https://orcid.org/0000-0002-3491-5968"},"institutions":[{"id":"https://openalex.org/I39422238","display_name":"University of Illinois Chicago","ror":"https://ror.org/02mpq6x41","country_code":"US","type":"education","lineage":["https://openalex.org/I39422238"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Philip S. Yu","raw_affiliation_strings":["University of Illinois at Chicago, Chicago, IL, USA"],"affiliations":[{"raw_affiliation_string":"University of Illinois at Chicago, Chicago, IL, USA","institution_ids":["https://openalex.org/I39422238"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.45,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":20,"citation_normalized_percentile":{"value":0.871774,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":91,"max":92},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10203","display_name":"Recommender System Technologies","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10203","display_name":"Recommender System Technologies","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Graph Neural Network Models and Applications","score":0.9554,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Understanding Human Mobility Patterns","score":0.9513,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/dot-product","display_name":"Dot product","score":0.6232331},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.583243},{"id":"https://openalex.org/keywords/triangle-inequality","display_name":"Triangle inequality","score":0.5379141},{"id":"https://openalex.org/keywords/user-modeling","display_name":"User Modeling","score":0.532413},{"id":"https://openalex.org/keywords/content-based-recommendation","display_name":"Content-Based Recommendation","score":0.532326},{"id":"https://openalex.org/keywords/collaborative-filtering","display_name":"Collaborative Filtering","score":0.529429},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.52373}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7025039},{"id":"https://openalex.org/C32900221","wikidata":"https://www.wikidata.org/wiki/Q181365","display_name":"Dot product","level":2,"score":0.6232331},{"id":"https://openalex.org/C163716315","wikidata":"https://www.wikidata.org/wiki/Q901177","display_name":"Gaussian","level":2,"score":0.6228075},{"id":"https://openalex.org/C182964748","wikidata":"https://www.wikidata.org/wiki/Q208216","display_name":"Triangle inequality","level":2,"score":0.5379141},{"id":"https://openalex.org/C110121322","wikidata":"https://www.wikidata.org/wiki/Q865811","display_name":"Distribution (mathematics)","level":2,"score":0.5195142},{"id":"https://openalex.org/C90673727","wikidata":"https://www.wikidata.org/wiki/Q901718","display_name":"Product (mathematics)","level":2,"score":0.5127419},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.46916825},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.4484166},{"id":"https://openalex.org/C2778572836","wikidata":"https://www.wikidata.org/wiki/Q380933","display_name":"Space (punctuation)","level":2,"score":0.4317922},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39104956},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.39061365},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3237788},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23278889},{"id":"https://openalex.org/C118615104","wikidata":"https://www.wikidata.org/wiki/Q121416","display_name":"Discrete mathematics","level":1,"score":0.08619058},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3331184.3331330","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3331184.3331330","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3331184.3331330","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3331184.3331330","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities","score":0.48}],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"IIS-1526499, IIS-1763325, CNS-1626432, IIS-1763365"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61672313"}],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W105848778","https://openalex.org/W2036308924","https://openalex.org/W2042281163","https://openalex.org/W2054141820","https://openalex.org/W2140310134","https://openalex.org/W2176412452","https://openalex.org/W2340502990","https://openalex.org/W2575006718","https://openalex.org/W2604433096","https://openalex.org/W2605350416","https://openalex.org/W2783289928","https://openalex.org/W2964282455","https://openalex.org/W3099386565","https://openalex.org/W3100591234"],"related_works":["https://openalex.org/W4375867731","https://openalex.org/W4304166257","https://openalex.org/W4294635752","https://openalex.org/W4230611425","https://openalex.org/W2953968544","https://openalex.org/W2731899572","https://openalex.org/W2611989081","https://openalex.org/W2575715081","https://openalex.org/W2147485352","https://openalex.org/W1597686267"],"abstract_inverted_index":{"Existing":[0],"recommendation":[1],"methods":[2,28],"mostly":[3],"learn":[4],"fixed":[5,89],"vectors":[6],"for":[7],"users":[8,78],"and":[9,16,43,52,79,101,126,149],"items":[10,80],"in":[11,55,62,112],"a":[12,56,109],"low-dimensional":[13],"continuous":[14],"space,":[15],"then":[17],"calculate":[18],"the":[19,34,45,48,66,114,142,145],"popular":[20],"dot-product":[21,46],"to":[22,64,76,88,96],"derive":[23],"user-item":[24],"distances.":[25],"However,":[26],"these":[27],"suffer":[29],"from":[30,39],"two":[31,67],"drawbacks:":[32],"(1)":[33],"data":[35],"sparsity":[36],"issue":[37],"prevents":[38],"learning":[40],"high-quality":[41],"representations;":[42],"(2)":[44],"violates":[47],"crucial":[49],"triangular":[50,116],"inequality":[51,117],"therefore,":[53],"results":[54],"sub-optimal":[57],"performance.":[58],"In":[59,105,121],"this":[60],"work,":[61],"order":[63],"overcome":[65],"aforementioned":[68],"drawbacks,":[69],"we":[70,107,123],"propose":[71,108],"Deep":[72],"Distribution":[73],"Network":[74],"(DDN)":[75],"model":[77],"via":[81],"Gaussian":[82],"distributions.":[83],"We":[84],"argue":[85],"that,":[86],"compared":[87],"vectors,":[90],"distribution-based":[91,147],"representations":[92,148],"are":[93],"more":[94],"powerful":[95],"characterize":[97],"users'":[98],"uncertain":[99],"interests":[100],"items'":[102],"distinct":[103],"properties.":[104],"addition,":[106],"Wasserstein-based":[110],"loss,":[111],"which":[113],"critical":[115],"can":[118],"be":[119],"satisfied.":[120],"experiments,":[122],"evaluate":[124],"DDN":[125,136],"comparative":[127],"models":[128],"on":[129],"standard":[130],"datasets.":[131],"It":[132],"is":[133],"shown":[134],"that":[135],"significantly":[137],"outperforms":[138],"state-of-the-art":[139],"models,":[140],"demonstrating":[141],"advantages":[143],"of":[144],"proposed":[146],"wassertein":[150],"loss.":[151]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2953968544","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":3}],"updated_date":"2024-11-30T13:40:32.424338","created_date":"2019-07-12"}