{"id":"https://openalex.org/W2953831886","doi":"https://doi.org/10.1145/3331184.3331322","title":"Sequence and Time Aware Neighborhood for Session-based Recommendations","display_name":"Sequence and Time Aware Neighborhood for Session-based Recommendations","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W2953831886","doi":"https://doi.org/10.1145/3331184.3331322","mag":"2953831886"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331322","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5077227952","display_name":"D. Garg","orcid":"https://orcid.org/0000-0001-8383-9343"},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Diksha Garg","raw_affiliation_strings":["TCS Research, India, Noida, India"],"affiliations":[{"raw_affiliation_string":"TCS Research, India, Noida, India","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101809977","display_name":"Priyanka Gupta","orcid":"https://orcid.org/0000-0002-1907-0426"},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Priyanka Gupta","raw_affiliation_strings":["TCS Research, India, Noida, India"],"affiliations":[{"raw_affiliation_string":"TCS Research, India, Noida, India","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101945431","display_name":"Pankaj Malhotra","orcid":"https://orcid.org/0000-0002-9574-8139"},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Pankaj Malhotra","raw_affiliation_strings":["TCS Research, India, Noida, India"],"affiliations":[{"raw_affiliation_string":"TCS Research, India, Noida, India","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071894271","display_name":"Lovekesh Vig","orcid":"https://orcid.org/0000-0001-9834-3308"},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Lovekesh Vig","raw_affiliation_strings":["TCS Research, India, Noida, India"],"affiliations":[{"raw_affiliation_string":"TCS Research, India, Noida, India","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5038397893","display_name":"Gautam Shroff","orcid":"https://orcid.org/0000-0002-0340-0283"},"institutions":[],"countries":["IN"],"is_corresponding":false,"raw_author_name":"Gautam Shroff","raw_affiliation_strings":["TCS Research, India, Noida, India"],"affiliations":[{"raw_affiliation_string":"TCS Research, India, Noida, India","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":0,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":11.603,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":106,"citation_normalized_percentile":{"value":0.999821,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Advanced Bandit Algorithms Research","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9959,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/baseline","display_name":"Baseline (sea)","score":0.62555206},{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.6097148},{"id":"https://openalex.org/keywords/position","display_name":"Position (finance)","score":0.5282739}],"concepts":[{"id":"https://openalex.org/C2779182362","wikidata":"https://www.wikidata.org/wiki/Q17126187","display_name":"Session (web analytics)","level":2,"score":0.9568172},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.81425095},{"id":"https://openalex.org/C12725497","wikidata":"https://www.wikidata.org/wiki/Q810247","display_name":"Baseline (sea)","level":2,"score":0.62555206},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.6097148},{"id":"https://openalex.org/C198082294","wikidata":"https://www.wikidata.org/wiki/Q3399648","display_name":"Position (finance)","level":2,"score":0.5282739},{"id":"https://openalex.org/C48103436","wikidata":"https://www.wikidata.org/wiki/Q599031","display_name":"State (computer science)","level":2,"score":0.43268925},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.4272086},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.35434362},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3529097},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.13305902},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.11204836},{"id":"https://openalex.org/C111368507","wikidata":"https://www.wikidata.org/wiki/Q43518","display_name":"Oceanography","level":1,"score":0.0},{"id":"https://openalex.org/C10138342","wikidata":"https://www.wikidata.org/wiki/Q43015","display_name":"Finance","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331322","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Sustainable cities and communities","id":"https://metadata.un.org/sdg/11","score":0.51}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":14,"referenced_works":["https://openalex.org/W1978609982","https://openalex.org/W2057991616","https://openalex.org/W2072992969","https://openalex.org/W2159094788","https://openalex.org/W2626454364","https://openalex.org/W2746011824","https://openalex.org/W2795199972","https://openalex.org/W2809307135","https://openalex.org/W2884415941","https://openalex.org/W2964044287","https://openalex.org/W2964316331","https://openalex.org/W3101063193","https://openalex.org/W3101707147","https://openalex.org/W3102619277"],"related_works":["https://openalex.org/W644007644","https://openalex.org/W621808327","https://openalex.org/W4296749040","https://openalex.org/W4230197055","https://openalex.org/W3177475962","https://openalex.org/W3012257603","https://openalex.org/W2383111961","https://openalex.org/W2380820513","https://openalex.org/W2365952365","https://openalex.org/W2352448290"],"abstract_inverted_index":{"Recent":[0],"advances":[1],"in":[2,95,117,187],"sequence-aware":[3],"approaches":[4],"for":[5,43,87,126,182],"session-based":[6,44,184],"recommendation,":[7],"such":[8],"as":[9,76,178],"those":[10],"based":[11,32],"on":[12,147],"recurrent":[13],"neural":[14],"networks,":[15],"highlight":[16],"the":[17,53,84,96,107,163],"importance":[18,122],"of":[19,92,101,113,123],"leveraging":[20],"sequential":[21,56],"information":[22,59],"from":[23,60],"a":[24,30,40,102,114,118,127,179],"session":[25,31,104],"while":[26],"making":[27,88],"recommendations.":[28,45],"Further,":[29],"k-nearest-neighbors":[33],"approach":[34],"(SKNN)":[35],"has":[36],"proven":[37],"to":[38,106,143,162],"be":[39,131,176],"strong":[41,180],"baseline":[42,181],"However,":[46],"SKNN":[47,75],"does":[48],"not":[49],"take":[50],"into":[51,82],"account":[52,83],"readily":[54],"available":[55],"and":[57,68,110,141,158],"temporal":[58],"sessions.":[61],"In":[62],"this":[63],"work,":[64],"we":[65],"propose":[66],"Sequence":[67],"Time":[69],"Aware":[70],"Neighborhood":[71],"(STAN),":[72],"with":[73],"vanilla":[74],"its":[77],"special":[78],"case.":[79],"STAN":[80,153,174],"takes":[81],"following":[85],"factors":[86,125],"recommendations:":[89],"i)":[90],"position":[91,112],"an":[93],"item":[94,116],"current":[97,108],"session,":[98,109],"ii)":[99],"recency":[100],"past":[103],"w.r.t.":[105],"iii)":[111],"recommendable":[115],"neighboring":[119],"session.":[120],"The":[121],"above":[124],"specific":[128],"application":[129],"can":[130,175],"adjusted":[132],"via":[133],"controllable":[134],"decay":[135],"factors.":[136],"Despite":[137],"being":[138],"simple,":[139],"intuitive":[140],"easy":[142],"implement,":[144],"empirical":[145],"evaluation":[146],"three":[148],"real-world":[149],"datasets":[150],"shows":[151],"that":[152,173],"significantly":[154],"improves":[155],"over":[156],"SKNN,":[157],"is":[159],"even":[160],"comparable":[161],"recently":[164],"proposed":[165],"state-of-the-art":[166],"deep":[167],"learning":[168],"approaches.":[169],"Our":[170],"results":[171],"suggest":[172],"considered":[177],"evaluating":[183],"recommendation":[185],"algorithms":[186],"future.":[188]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2953831886","counts_by_year":[{"year":2024,"cited_by_count":11},{"year":2023,"cited_by_count":28},{"year":2022,"cited_by_count":28},{"year":2021,"cited_by_count":18},{"year":2020,"cited_by_count":15},{"year":2019,"cited_by_count":4},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-10T01:32:22.924164","created_date":"2019-07-12"}