{"id":"https://openalex.org/W2954973878","doi":"https://doi.org/10.1145/3331184.3331288","title":"Information Cascades Modeling via Deep Multi-Task Learning","display_name":"Information Cascades Modeling via Deep Multi-Task Learning","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W2954973878","doi":"https://doi.org/10.1145/3331184.3331288","mag":"2954973878"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3331184.3331288","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3331184.3331288","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3331184.3331288","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100649527","display_name":"Xueqin Chen","orcid":null},"institutions":[{"id":"https://openalex.org/I150229711","display_name":"University of Electronic Science and Technology of China","ror":"https://ror.org/04qr3zq92","country_code":"CN","type":"education","lineage":["https://openalex.org/I150229711"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xueqin Chen","raw_affiliation_strings":["University of Electronic Science and Technology of China, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"University of Electronic Science and Technology of China, Chengdu, China","institution_ids":["https://openalex.org/I150229711"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014223717","display_name":"Kunpeng Zhang","orcid":"https://orcid.org/0000-0002-1474-3169"},"institutions":[{"id":"https://openalex.org/I66946132","display_name":"University of Maryland, College Park","ror":"https://ror.org/047s2c258","country_code":"US","type":"education","lineage":["https://openalex.org/I66946132"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kunpeng Zhang","raw_affiliation_strings":["University of Maryland, College park, MD, USA"],"affiliations":[{"raw_affiliation_string":"University of Maryland, College park, MD, USA","institution_ids":["https://openalex.org/I66946132"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100403505","display_name":"Fan Zhou","orcid":"https://orcid.org/0000-0002-8038-8150"},"institutions":[{"id":"https://openalex.org/I150229711","display_name":"University of Electronic Science and Technology of China","ror":"https://ror.org/04qr3zq92","country_code":"CN","type":"education","lineage":["https://openalex.org/I150229711"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fan Zhou","raw_affiliation_strings":["University of Electronic Science and Technology of China, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"University of Electronic Science and Technology of China, Chengdu, China","institution_ids":["https://openalex.org/I150229711"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086447943","display_name":"Goce Trajcevski","orcid":"https://orcid.org/0000-0002-8839-6278"},"institutions":[{"id":"https://openalex.org/I173911158","display_name":"Iowa State University","ror":"https://ror.org/04rswrd78","country_code":"US","type":"education","lineage":["https://openalex.org/I173911158"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Goce Trajcevski","raw_affiliation_strings":["Iowa State University, Ames, IA, USA"],"affiliations":[{"raw_affiliation_string":"Iowa State University, Ames, IA, USA","institution_ids":["https://openalex.org/I173911158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5034789908","display_name":"Ting Zhong","orcid":"https://orcid.org/0000-0002-8163-3146"},"institutions":[{"id":"https://openalex.org/I150229711","display_name":"University of Electronic Science and Technology of China","ror":"https://ror.org/04qr3zq92","country_code":"CN","type":"education","lineage":["https://openalex.org/I150229711"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ting Zhong","raw_affiliation_strings":["University of Electronic Science and Technology of China, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"University of Electronic Science and Technology of China, Chengdu, China","institution_ids":["https://openalex.org/I150229711"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5076831677","display_name":"Fengli Zhang","orcid":"https://orcid.org/0000-0003-2300-8817"},"institutions":[{"id":"https://openalex.org/I150229711","display_name":"University of Electronic Science and Technology of China","ror":"https://ror.org/04qr3zq92","country_code":"CN","type":"education","lineage":["https://openalex.org/I150229711"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Fengli Zhang","raw_affiliation_strings":["University of Electronic Science and Technology of China, Chengdu, China"],"affiliations":[{"raw_affiliation_string":"University of Electronic Science and Technology of China, Chengdu, China","institution_ids":["https://openalex.org/I150229711"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":6.298,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":39,"citation_normalized_percentile":{"value":0.924223,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10064","display_name":"Statistical Mechanics of Complex Networks","score":1.0,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10064","display_name":"Statistical Mechanics of Complex Networks","score":1.0,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12592","display_name":"Statistical Physics of Opinion Dynamics","score":0.9983,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11147","display_name":"The Spread of Misinformation Online","score":0.981,"subfield":{"id":"https://openalex.org/subfields/3312","display_name":"Sociology and Political Science"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/encode","display_name":"ENCODE","score":0.6244362},{"id":"https://openalex.org/keywords/representation","display_name":"Representation (politics)","score":0.60281897},{"id":"https://openalex.org/keywords/influence-maximization","display_name":"Influence Maximization","score":0.522849},{"id":"https://openalex.org/keywords/feature-learning","display_name":"Feature learning","score":0.521063},{"id":"https://openalex.org/keywords/information-cascade","display_name":"Information cascade","score":0.47371048},{"id":"https://openalex.org/keywords/identification","display_name":"Identification (biology)","score":0.46872413},{"id":"https://openalex.org/keywords/viral-marketing","display_name":"Viral marketing","score":0.43101272}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8310441},{"id":"https://openalex.org/C34146451","wikidata":"https://www.wikidata.org/wiki/Q5048094","display_name":"Cascade","level":2,"score":0.7732878},{"id":"https://openalex.org/C66746571","wikidata":"https://www.wikidata.org/wiki/Q1134833","display_name":"ENCODE","level":3,"score":0.6244362},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62428147},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.60281897},{"id":"https://openalex.org/C62611344","wikidata":"https://www.wikidata.org/wiki/Q1062658","display_name":"Node (physics)","level":2,"score":0.5540942},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.55028903},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.52404076},{"id":"https://openalex.org/C59404180","wikidata":"https://www.wikidata.org/wiki/Q17013334","display_name":"Feature learning","level":2,"score":0.521063},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.5038447},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.47378656},{"id":"https://openalex.org/C27286358","wikidata":"https://www.wikidata.org/wiki/Q6031027","display_name":"Information cascade","level":2,"score":0.47371048},{"id":"https://openalex.org/C116834253","wikidata":"https://www.wikidata.org/wiki/Q2039217","display_name":"Identification (biology)","level":2,"score":0.46872413},{"id":"https://openalex.org/C187008535","wikidata":"https://www.wikidata.org/wiki/Q204255","display_name":"Viral marketing","level":3,"score":0.43101272},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.42778862},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.20345286},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C518677369","wikidata":"https://www.wikidata.org/wiki/Q202833","display_name":"Social media","level":2,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C59822182","wikidata":"https://www.wikidata.org/wiki/Q441","display_name":"Botany","level":1,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3331184.3331288","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3331184.3331288","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3331184.3331288","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3331184.3331288","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"III 1213038, CNS 1646107"}],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W1508765177","https://openalex.org/W1742402942","https://openalex.org/W1780764807","https://openalex.org/W2107383413","https://openalex.org/W2296752489","https://openalex.org/W2510535358","https://openalex.org/W2551441958","https://openalex.org/W2612613843","https://openalex.org/W2740189214","https://openalex.org/W2767220239","https://openalex.org/W2897605361","https://openalex.org/W2951851909","https://openalex.org/W2962683462","https://openalex.org/W2963493749","https://openalex.org/W2963858333","https://openalex.org/W2964335473","https://openalex.org/W3104987177","https://openalex.org/W3105291472"],"related_works":["https://openalex.org/W4385988053","https://openalex.org/W4379925025","https://openalex.org/W4292369391","https://openalex.org/W4200012112","https://openalex.org/W3104987177","https://openalex.org/W3041929574","https://openalex.org/W2990751567","https://openalex.org/W2810784123","https://openalex.org/W2067425759","https://openalex.org/W2038891404"],"abstract_inverted_index":{"Effectively":[0],"modeling":[1],"and":[2,29,46,91,129,149,174],"predicting":[3,130],"the":[4,9,13,41,51,75,84,92,96,131,137,142,147,150,154,171,176],"information":[5,14],"cascades":[6,67],"is":[7,17],"at":[8],"core":[10],"of":[11,43,55,81,87,121,153],"understanding":[12,128],"diffusion,":[15],"which":[16],"essential":[18],"for":[19,35],"many":[20],"related":[21],"downstream":[22],"applications,":[23],"such":[24],"as":[25],"fake":[26],"news":[27],"detection":[28],"viral":[30],"marketing":[31],"identification.":[32],"Conventional":[33],"methods":[34],"cascade":[36,89,155],"prediction":[37,105,172],"heavily":[38],"depend":[39],"on":[40,161],"hypothesis":[42],"diffusion":[44,97],"models":[45,77],"hand-crafted":[47],"features.":[48],"Owing":[49],"to":[50,65,124,180],"significant":[52],"recent":[53],"successes":[54],"deep":[56,113],"learning":[57,115],"in":[58,95,100,103,126],"multiple":[59],"domains,":[60],"attempts":[61],"have":[62],"been":[63],"made":[64],"predict":[66],"by":[68],"developing":[69],"neural":[70],"networks":[71],"based":[72],"approaches.":[73],"However,":[74],"existing":[76],"are":[78],"not":[79],"capable":[80],"capturing":[82],"both":[83],"underlying":[85],"structure":[86,148],"a":[88,112,118],"graph":[90],"node":[93,151],"sequence":[94,152],"process":[98],"which,":[99],"turn,":[101],"results":[102],"unsatisfactory":[104],"performance.":[106],"In":[107],"this":[108],"paper,":[109],"we":[110],"propose":[111],"multi-task":[114],"framework":[116],"with":[117],"novel":[119],"design":[120],"shared-representation":[122,143],"layer":[123,144],"aid":[125],"explicitly":[127],"cascades.":[132],"As":[133],"it":[134],"turns":[135],"out,":[136],"learned":[138],"latent":[139],"representation":[140],"from":[141],"can":[145,168],"encode":[146],"very":[156],"well.":[157],"Our":[158],"experiments":[159],"conducted":[160],"real-world":[162],"datasets":[163],"demonstrate":[164],"that":[165],"our":[166],"method":[167],"significantly":[169],"improve":[170],"accuracy":[173],"reduce":[175],"computational":[177],"cost":[178],"compared":[179],"state-of-the-art":[181],"baselines.":[182]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2954973878","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":11},{"year":2021,"cited_by_count":15},{"year":2020,"cited_by_count":4}],"updated_date":"2024-12-04T07:16:48.657679","created_date":"2019-07-12"}