{"id":"https://openalex.org/W2954960254","doi":"https://doi.org/10.1145/3331184.3331287","title":"Encoding Syntactic Dependency and Topical Information for Social Emotion Classification","display_name":"Encoding Syntactic Dependency and Topical Information for Social Emotion Classification","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W2954960254","doi":"https://doi.org/10.1145/3331184.3331287","mag":"2954960254"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331287","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100371655","display_name":"Chang Wang","orcid":"https://orcid.org/0000-0003-0161-0591"},"institutions":[{"id":"https://openalex.org/I47720641","display_name":"Huazhong University of Science and Technology","ror":"https://ror.org/00p991c53","country_code":"CN","type":"education","lineage":["https://openalex.org/I47720641"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Chang Wang","raw_affiliation_strings":["Huazhong University of Science and Technology (HUST), Wuhan, China"],"affiliations":[{"raw_affiliation_string":"Huazhong University of Science and Technology (HUST), Wuhan, China","institution_ids":["https://openalex.org/I47720641"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5071384393","display_name":"Bang Wang","orcid":"https://orcid.org/0000-0002-0312-4805"},"institutions":[{"id":"https://openalex.org/I47720641","display_name":"Huazhong University of Science and Technology","ror":"https://ror.org/00p991c53","country_code":"CN","type":"education","lineage":["https://openalex.org/I47720641"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Bang Wang","raw_affiliation_strings":["Huazhong University of Science and Technology (HUST), Wuhan, China"],"affiliations":[{"raw_affiliation_string":"Huazhong University of Science and Technology (HUST), Wuhan, China","institution_ids":["https://openalex.org/I47720641"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101670320","display_name":"Wei Xiang","orcid":"https://orcid.org/0000-0002-4675-3900"},"institutions":[{"id":"https://openalex.org/I47720641","display_name":"Huazhong University of Science and Technology","ror":"https://ror.org/00p991c53","country_code":"CN","type":"education","lineage":["https://openalex.org/I47720641"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wei Xiang","raw_affiliation_strings":["Huazhong University of Science and Technology (HUST), Wuhan, China"],"affiliations":[{"raw_affiliation_string":"Huazhong University of Science and Technology (HUST), Wuhan, China","institution_ids":["https://openalex.org/I47720641"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5016190045","display_name":"Minghua Xu","orcid":"https://orcid.org/0000-0003-3922-1946"},"institutions":[{"id":"https://openalex.org/I47720641","display_name":"Huazhong University of Science and Technology","ror":"https://ror.org/00p991c53","country_code":"CN","type":"education","lineage":["https://openalex.org/I47720641"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Minghua Xu","raw_affiliation_strings":["Huazhong University of Science and Technology (HUST), Wuhan, China"],"affiliations":[{"raw_affiliation_string":"Huazhong University of Science and Technology (HUST), Wuhan, China","institution_ids":["https://openalex.org/I47720641"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.195,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":23,"citation_normalized_percentile":{"value":0.842408,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Multi-label Text Classification in Machine Learning","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Automatic Keyword Extraction from Textual Data","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/encode","display_name":"ENCODE","score":0.602845},{"id":"https://openalex.org/keywords/emotion-recognition","display_name":"Emotion Recognition","score":0.588649},{"id":"https://openalex.org/keywords/aspect-based-sentiment-analysis","display_name":"Aspect-based Sentiment Analysis","score":0.510941},{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.508531},{"id":"https://openalex.org/keywords/textual-data","display_name":"Textual Data","score":0.502456},{"id":"https://openalex.org/keywords/perceptron","display_name":"Perceptron","score":0.48977804},{"id":"https://openalex.org/keywords/representation","display_name":"Representation (politics)","score":0.48581553}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79434395},{"id":"https://openalex.org/C19768560","wikidata":"https://www.wikidata.org/wiki/Q320727","display_name":"Dependency (UML)","level":2,"score":0.6978016},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.6828239},{"id":"https://openalex.org/C125411270","wikidata":"https://www.wikidata.org/wiki/Q18653","display_name":"Encoding (memory)","level":2,"score":0.6626558},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.64854956},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.60610485},{"id":"https://openalex.org/C66746571","wikidata":"https://www.wikidata.org/wiki/Q1134833","display_name":"ENCODE","level":3,"score":0.602845},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4919269},{"id":"https://openalex.org/C60908668","wikidata":"https://www.wikidata.org/wiki/Q690207","display_name":"Perceptron","level":3,"score":0.48977804},{"id":"https://openalex.org/C2776359362","wikidata":"https://www.wikidata.org/wiki/Q2145286","display_name":"Representation (politics)","level":3,"score":0.48581553},{"id":"https://openalex.org/C147168706","wikidata":"https://www.wikidata.org/wiki/Q1457734","display_name":"Recurrent neural network","level":3,"score":0.4749344},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3741574},{"id":"https://openalex.org/C28490314","wikidata":"https://www.wikidata.org/wiki/Q189436","display_name":"Speech recognition","level":1,"score":0.35060245},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C94625758","wikidata":"https://www.wikidata.org/wiki/Q7163","display_name":"Politics","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331287","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.48,"display_name":"Reduced inequalities","id":"https://metadata.un.org/sdg/10"}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61771209"}],"datasets":[],"versions":[],"referenced_works_count":3,"referenced_works":["https://openalex.org/W2045631398","https://openalex.org/W2285696530","https://openalex.org/W4296976275"],"related_works":["https://openalex.org/W4378714697","https://openalex.org/W3031223029","https://openalex.org/W2804553224","https://openalex.org/W2372020181","https://openalex.org/W2294330161","https://openalex.org/W2253069048","https://openalex.org/W2156531654","https://openalex.org/W1581723585","https://openalex.org/W1510159504","https://openalex.org/W140709781"],"abstract_inverted_index":{"Social":[0],"emotion":[1,10],"classification":[2],"is":[3,92],"to":[4,47,61,76,94],"estimate":[5],"the":[6,35,63,78,96,100,104,108,123],"distribution":[7],"of":[8,81,103,128],"readers'":[9],"evoked":[11],"by":[12,25],"an":[13],"article.":[14],"In":[15],"this":[16],"paper,":[17],"we":[18],"design":[19],"a":[20,41,57,67,73,82,85,89],"new":[21],"neural":[22,45],"network":[23,46],"model":[24,121],"encoding":[26],"sentence":[27],"syntactic":[28,49],"dependency":[29,42],"and":[30,54,107,134],"document":[31,36,68,83,97,105],"topical":[32,79],"information":[33,80],"into":[34,66,84],"representation.":[37],"We":[38,70],"first":[39],"use":[40,56,72],"embedded":[43],"recursive":[44],"learn":[48],"features":[50],"for":[51],"each":[52],"sentence,":[53],"then":[55],"gated":[58,101],"recurrent":[59],"unit":[60],"transform":[62],"sentences'":[64],"vectors":[65],"vector.":[69,87,110],"also":[71],"multi-layer":[74],"perceptron":[75],"encode":[77],"topic":[86,109],"Finally,":[88],"gate":[90],"layer":[91],"used":[93],"compose":[95],"representation":[98],"from":[99],"summation":[102],"vector":[106],"Experiment":[111],"results":[112],"on":[113],"two":[114],"public":[115],"datasets":[116],"indicate":[117],"that":[118],"our":[119],"proposed":[120],"outperforms":[122],"state-of-the-art":[124],"methods":[125],"in":[126],"terms":[127],"better":[129],"average":[130],"Pearson":[131],"correlation":[132],"coefficient":[133],"MicroF1":[135],"performance.":[136]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2954960254","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":5},{"year":2021,"cited_by_count":8},{"year":2020,"cited_by_count":4}],"updated_date":"2024-11-21T03:33:40.523453","created_date":"2019-07-12"}