{"id":"https://openalex.org/W2955193272","doi":"https://doi.org/10.1145/3331184.3331263","title":"Harvesting Drug Effectiveness from Social Media","display_name":"Harvesting Drug Effectiveness from Social Media","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W2955193272","doi":"https://doi.org/10.1145/3331184.3331263","mag":"2955193272"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331263","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5067695432","display_name":"Zi Chai","orcid":null},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zi Chai","raw_affiliation_strings":["Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029568096","display_name":"Xiaojun Wan","orcid":"https://orcid.org/0000-0001-6887-1994"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaojun Wan","raw_affiliation_strings":["Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5078136508","display_name":"Zhao Zhang","orcid":"https://orcid.org/0000-0001-5884-2962"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhao Zhang","raw_affiliation_strings":["Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5101545917","display_name":"Minjie Li","orcid":"https://orcid.org/0000-0002-5472-646X"},"institutions":[{"id":"https://openalex.org/I20231570","display_name":"Peking University","ror":"https://ror.org/02v51f717","country_code":"CN","type":"education","lineage":["https://openalex.org/I20231570"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Minjie Li","raw_affiliation_strings":["Peking University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Peking University, Beijing, China","institution_ids":["https://openalex.org/I20231570"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.141,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":2,"citation_normalized_percentile":{"value":0.409759,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":70,"max":74},"biblio":{"volume":null,"issue":null,"first_page":"55","last_page":"64"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9981,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11710","display_name":"Biomedical Ontologies and Text Mining","score":0.9975,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}},{"id":"https://openalex.org/T11550","display_name":"Multi-label Text Classification in Machine Learning","score":0.9793,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/margin","display_name":"Margin (machine learning)","score":0.6790633},{"id":"https://openalex.org/keywords/information-retrieval","display_name":"Information Retrieval","score":0.438305},{"id":"https://openalex.org/keywords/relationship-extraction","display_name":"Relationship extraction","score":0.43225437}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79098463},{"id":"https://openalex.org/C774472","wikidata":"https://www.wikidata.org/wiki/Q6760393","display_name":"Margin (machine learning)","level":2,"score":0.6790633},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.62462026},{"id":"https://openalex.org/C518677369","wikidata":"https://www.wikidata.org/wiki/Q202833","display_name":"Social media","level":2,"score":0.5401771},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5082214},{"id":"https://openalex.org/C195807954","wikidata":"https://www.wikidata.org/wiki/Q1662562","display_name":"Information extraction","level":2,"score":0.46913},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.46864077},{"id":"https://openalex.org/C25343380","wikidata":"https://www.wikidata.org/wiki/Q277521","display_name":"Relation (database)","level":2,"score":0.45304963},{"id":"https://openalex.org/C153604712","wikidata":"https://www.wikidata.org/wiki/Q7310755","display_name":"Relationship extraction","level":3,"score":0.43225437},{"id":"https://openalex.org/C2780035454","wikidata":"https://www.wikidata.org/wiki/Q8386","display_name":"Drug","level":2,"score":0.42206004},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.39818656},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36222532},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32475656},{"id":"https://openalex.org/C136764020","wikidata":"https://www.wikidata.org/wiki/Q466","display_name":"World Wide Web","level":1,"score":0.15352166},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.14003944},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.10517809},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.094135255},{"id":"https://openalex.org/C201995342","wikidata":"https://www.wikidata.org/wiki/Q682496","display_name":"Systems engineering","level":1,"score":0.0},{"id":"https://openalex.org/C118552586","wikidata":"https://www.wikidata.org/wiki/Q7867","display_name":"Psychiatry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331263","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Good health and well-being","id":"https://metadata.un.org/sdg/3","score":0.7}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":46,"referenced_works":["https://openalex.org/W1614298861","https://openalex.org/W1662382123","https://openalex.org/W1924770834","https://openalex.org/W1972328044","https://openalex.org/W1976152446","https://openalex.org/W2033890227","https://openalex.org/W2064675550","https://openalex.org/W2095705004","https://openalex.org/W2153401380","https://openalex.org/W2173027866","https://openalex.org/W2244807774","https://openalex.org/W2250521169","https://openalex.org/W2251135946","https://openalex.org/W2251622960","https://openalex.org/W2295030615","https://openalex.org/W2335791510","https://openalex.org/W2346452181","https://openalex.org/W2396593442","https://openalex.org/W2468907370","https://openalex.org/W2471518212","https://openalex.org/W2472989630","https://openalex.org/W2515462165","https://openalex.org/W2517194566","https://openalex.org/W2567547739","https://openalex.org/W2577666659","https://openalex.org/W2590462354","https://openalex.org/W2604444602","https://openalex.org/W2626778328","https://openalex.org/W2740759433","https://openalex.org/W2752861104","https://openalex.org/W2757541972","https://openalex.org/W2788031953","https://openalex.org/W2798393196","https://openalex.org/W2798749466","https://openalex.org/W2849265501","https://openalex.org/W2883362973","https://openalex.org/W2887428522","https://openalex.org/W2895715183","https://openalex.org/W2900041539","https://openalex.org/W2963021258","https://openalex.org/W2963341956","https://openalex.org/W2998704965","https://openalex.org/W34638141","https://openalex.org/W4205509257","https://openalex.org/W4285719527","https://openalex.org/W872111569"],"related_works":["https://openalex.org/W4385734297","https://openalex.org/W4380551175","https://openalex.org/W4285246823","https://openalex.org/W4226278302","https://openalex.org/W4221160509","https://openalex.org/W3114142812","https://openalex.org/W2981341912","https://openalex.org/W2976808399","https://openalex.org/W2609844752","https://openalex.org/W2547211086"],"abstract_inverted_index":{"Drug":[0],"effectiveness":[1,75,96],"describes":[2],"the":[3,52,149],"capacity":[4],"of":[5,14,26,42,60,68,146,151],"a":[6,10,24,39,47,84,135,169,179,197],"drug":[7,18,74,90,95],"to":[8,71,164,174],"cure":[9],"disease,":[11],"which":[12,116],"is":[13,46,67,117,172],"great":[15,69],"importance":[16],"for":[17,120],"safety.":[19],"To":[20,79],"get":[21],"this":[22,80,131],"information,":[23],"number":[25],"real-world":[27],"patient-oriented":[28,61],"outcomes":[29],"are":[30,128],"required.":[31],"However,":[32],"current":[33],"surveillance":[34],"systems":[35],"can":[36],"only":[37],"capture":[38,165],"small":[40],"portion":[41],"them,":[43],"and":[44,92,104],"there":[45],"time":[48],"lag":[49],"in":[50,64,182],"processing":[51],"reported":[53],"data.":[54,78],"Since":[55],"social":[56],"media":[57],"provides":[58],"quantities":[59],"user":[62],"posts":[63],"real-time,":[65],"it":[66,157],"value":[70],"automatically":[72],"extract":[73],"from":[76],"these":[77],"end,":[81],"we":[82,133],"build":[83],"dataset":[85],"containing":[86],"25K":[87],"tweets":[88],"describing":[89],"use,":[91],"further":[93],"harvest":[94],"by":[97,143,196],"performing":[98],"Relation":[99],"Extraction":[100],"(RE)":[101],"between":[102],"chemicals":[103],"diseases.":[105],"Most":[106],"prior":[107],"works":[108],"about":[109],"RE":[110,184],"deal":[111],"with":[112,159],"mention":[113,126,138,161],"pairs":[114,127,139,162],"independently,":[115],"not":[118],"suitable":[119],"our":[121,191],"task":[122],"since":[123],"interactions":[124],"across":[125],"widespread.":[129],"In":[130],"paper,":[132],"propose":[134],"model":[136,192],"regarding":[137],"as":[140],"nodes":[141],"connected":[142],"multiple":[144,176],"types":[145],"edges.":[147],"With":[148],"help":[150],"graph-based":[152],"information":[153],"transfers":[154],"over":[155],"time,":[156],"deals":[158],"all":[160],"simultaneously":[163],"their":[166],"interactions.":[167],"Besides,":[168],"novel":[170],"idea":[171],"used":[173],"perform":[175],"instance":[177],"learning,":[178],"big":[180],"challenge":[181],"general":[183],"tasks.":[185],"Extensive":[186],"experimental":[187],"results":[188],"show":[189],"that":[190],"outperforms":[193],"previous":[194],"work":[195],"substantial":[198],"margin.":[199]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2955193272","counts_by_year":[{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":1}],"updated_date":"2024-11-30T14:22:19.252264","created_date":"2019-07-12"}