{"id":"https://openalex.org/W2953874899","doi":"https://doi.org/10.1145/3331184.3331231","title":"Human Behavior Inspired Machine Reading Comprehension","display_name":"Human Behavior Inspired Machine Reading Comprehension","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W2953874899","doi":"https://doi.org/10.1145/3331184.3331231","mag":"2953874899"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331231","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5105348790","display_name":"Yukun Zheng","orcid":"https://orcid.org/0000-0003-0096-0979"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yukun Zheng","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5072119199","display_name":"Jiaxin Mao","orcid":"https://orcid.org/0000-0002-9257-5498"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jiaxin Mao","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100668121","display_name":"Yiqun Liu","orcid":"https://orcid.org/0000-0002-0140-4512"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yiqun Liu","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013895192","display_name":"Zixin Ye","orcid":"https://orcid.org/0000-0002-4107-3842"},"institutions":[{"id":"https://openalex.org/I82880672","display_name":"Beihang University","ror":"https://ror.org/00wk2mp56","country_code":"CN","type":"education","lineage":["https://openalex.org/I82880672"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zixin Ye","raw_affiliation_strings":["Beihang University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Beihang University, Beijing, China","institution_ids":["https://openalex.org/I82880672"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100402896","display_name":"Min Zhang","orcid":"https://orcid.org/0000-0002-2478-428X"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Min Zhang","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100760812","display_name":"Shaoping Ma","orcid":"https://orcid.org/0000-0002-8762-8268"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shaoping Ma","raw_affiliation_strings":["Tsinghua University, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Tsinghua University, Beijing, China","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.195,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":41,"citation_normalized_percentile":{"value":0.999908,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9842,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12031","display_name":"Speech and dialogue systems","score":0.9715,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/reciprocal-teaching","display_name":"Reciprocal teaching","score":0.42106006}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7804034},{"id":"https://openalex.org/C2778780117","wikidata":"https://www.wikidata.org/wiki/Q3269423","display_name":"Reading comprehension","level":3,"score":0.73594254},{"id":"https://openalex.org/C554936623","wikidata":"https://www.wikidata.org/wiki/Q199657","display_name":"Reading (process)","level":2,"score":0.71018547},{"id":"https://openalex.org/C511192102","wikidata":"https://www.wikidata.org/wiki/Q5156948","display_name":"Comprehension","level":2,"score":0.7047044},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.6468307},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5805471},{"id":"https://openalex.org/C165064840","wikidata":"https://www.wikidata.org/wiki/Q1321061","display_name":"Matching (statistics)","level":2,"score":0.5226719},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.5045153},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.4311872},{"id":"https://openalex.org/C163933246","wikidata":"https://www.wikidata.org/wiki/Q7302476","display_name":"Reciprocal teaching","level":4,"score":0.42106006},{"id":"https://openalex.org/C180747234","wikidata":"https://www.wikidata.org/wiki/Q23373","display_name":"Cognitive psychology","level":1,"score":0.32620877},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.16764274},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.15760905},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331231","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.9,"id":"https://metadata.un.org/sdg/4","display_name":"Quality education"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1552767446","https://openalex.org/W1678356000","https://openalex.org/W1803633430","https://openalex.org/W1974841121","https://openalex.org/W1975879668","https://openalex.org/W1999364590","https://openalex.org/W2013112874","https://openalex.org/W2028113824","https://openalex.org/W2040378704","https://openalex.org/W2060890758","https://openalex.org/W2068776631","https://openalex.org/W2101105183","https://openalex.org/W2108325777","https://openalex.org/W2114093986","https://openalex.org/W2139894677","https://openalex.org/W2162059449","https://openalex.org/W2164777277","https://openalex.org/W2414781555","https://openalex.org/W2512721747","https://openalex.org/W2517952511","https://openalex.org/W2521709538","https://openalex.org/W2560965260","https://openalex.org/W2740747242","https://openalex.org/W2896363972","https://openalex.org/W2950577311","https://openalex.org/W2963019137","https://openalex.org/W4285719527","https://openalex.org/W567326294"],"related_works":["https://openalex.org/W3213316308","https://openalex.org/W3162671311","https://openalex.org/W2919423371","https://openalex.org/W2595223242","https://openalex.org/W2364267925","https://openalex.org/W2161828220","https://openalex.org/W2082296339","https://openalex.org/W1984111673","https://openalex.org/W1981134905","https://openalex.org/W1972348076"],"abstract_inverted_index":{"Machine":[0],"Reading":[1],"Comprehension":[2],"(MRC)":[3],"is":[4,162,173,192],"one":[5],"of":[6,20,92,109,215,253],"the":[7,76,107,142,159,170,176,222,240,251,262],"most":[8],"challenging":[9],"tasks":[10],"in":[11,56,79,157,239,244],"both":[12,195],"NLP":[13],"and":[14,64,96,146,169,182,200,206,212,256,260],"IR":[15],"researches.":[16],"Recently,":[17],"a":[18,89,117,152,180],"number":[19],"deep":[21],"neural":[22],"models":[23,47],"have":[24,49],"been":[25],"successfully":[26],"adopted":[27],"to":[28,38,120,135,163,174,227,264],"some":[29],"simplified":[30],"MRC":[31,110,241],"task":[32],"settings,":[33,59],"whose":[34],"performances":[35],"were":[36],"close":[37],"or":[39],"even":[40],"better":[41,90,265],"than":[42],"human":[43,54,73,94,254],"beings.":[44],"However,":[45],"these":[46],"still":[48],"large":[50],"performance":[51,108,238],"gaps":[52],"with":[53,204],"beings":[55],"more":[57],"practical":[58],"such":[60],"as":[61],"MS":[62],"MARCO":[63],"DuReader":[65],"datasets.":[66],"Although":[67],"there":[68],"are":[69,133],"many":[70],"works":[71],"studying":[72],"reading":[74,81,101,123,127,154,224,233,255],"behavior,":[75],"behavior":[77,124,155,225],"patterns":[78,125],"complex":[80],"comprehension":[82,102,128],"scenarios":[83],"remain":[84],"under-investigated.":[85],"We":[86,185,217],"believe":[87],"that":[88,188],"understanding":[91,252],"how":[93],"reads":[95],"allocates":[97],"their":[98],"attention":[99,190,230],"during":[100,126,232],"processes":[103],"can":[104],"help":[105,261],"improve":[106],"tasks.":[111,139],"In":[112],"this":[113],"paper,":[114],"we":[115,150],"conduct":[116],"lab":[118],"study":[119],"investigate":[121],"human's":[122,189,229],"tasks,":[129],"where":[130],"32":[131],"users":[132],"recruited":[134],"take":[136],"60":[137],"distinct":[138],"By":[140],"analyzing":[141],"collected":[143],"eye-tracking":[144],"data":[145],"answers":[147],"from":[148,221],"participants,":[149],"propose":[151],"two-stage":[153,223],"model,":[156],"which":[158,235],"first":[160],"stage":[161,172],"search":[164],"for":[165],"possible":[166],"answer":[167,178,199],"candidates":[168],"second":[171],"generate":[175],"final":[177],"through":[179],"comparison":[181],"verification":[183],"process.":[184],"also":[186],"find":[187],"distribution":[191],"affected":[193],"by":[194],"question-dependent":[196],"factors":[197,208],"(e.g.,":[198,209],"soft":[201],"matching":[202],"signal":[203],"questions)":[205],"question-independent":[207],"position,":[210],"IDF":[211],"Part-of-Speech":[213],"tags":[214],"words).":[216],"extract":[218],"features":[219],"derived":[220],"model":[226],"predict":[228],"signals":[231],"comprehension,":[234],"significantly":[236],"improves":[237],"task.":[242],"Findings":[243],"our":[245],"work":[246],"may":[247],"bring":[248],"insight":[249],"into":[250],"information":[257,268],"seeking":[258],"processes,":[259],"machine":[263],"meet":[266],"users'":[267],"needs.":[269]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2953874899","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":10},{"year":2021,"cited_by_count":10},{"year":2020,"cited_by_count":10},{"year":2019,"cited_by_count":1}],"updated_date":"2024-12-10T01:21:40.757825","created_date":"2019-07-12"}