{"id":"https://openalex.org/W2955887579","doi":"https://doi.org/10.1145/3331184.3331218","title":"PSGAN","display_name":"PSGAN","publication_year":2019,"publication_date":"2019-07-18","ids":{"openalex":"https://openalex.org/W2955887579","doi":"https://doi.org/10.1145/3331184.3331218","mag":"2955887579"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331218","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101016825","display_name":"Shuqi Lu","orcid":"https://orcid.org/0000-0003-3899-6926"},"institutions":[{"id":"https://openalex.org/I78988378","display_name":"Renmin University of China","ror":"https://ror.org/041pakw92","country_code":"CN","type":"education","lineage":["https://openalex.org/I78988378"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shuqi Lu","raw_affiliation_strings":["Renmin University of China, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Renmin University of China, Beijing, China","institution_ids":["https://openalex.org/I78988378"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010558184","display_name":"Zhicheng Dou","orcid":"https://orcid.org/0000-0002-9781-948X"},"institutions":[{"id":"https://openalex.org/I78988378","display_name":"Renmin University of China","ror":"https://ror.org/041pakw92","country_code":"CN","type":"education","lineage":["https://openalex.org/I78988378"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhicheng Dou","raw_affiliation_strings":["Renmin University of China & Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Renmin University of China & Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China","institution_ids":["https://openalex.org/I78988378"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5020766468","display_name":"Jun Xu","orcid":"https://orcid.org/0000-0001-7170-111X"},"institutions":[{"id":"https://openalex.org/I78988378","display_name":"Renmin University of China","ror":"https://ror.org/041pakw92","country_code":"CN","type":"education","lineage":["https://openalex.org/I78988378"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xu Jun","raw_affiliation_strings":["Renmin University of China & Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Renmin University of China & Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China","institution_ids":["https://openalex.org/I78988378"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018977183","display_name":"Jian\u2010Yun Nie","orcid":"https://orcid.org/0000-0003-1556-3335"},"institutions":[{"id":"https://openalex.org/I70931966","display_name":"Universit\u00e9 de Montr\u00e9al","ror":"https://ror.org/0161xgx34","country_code":"CA","type":"education","lineage":["https://openalex.org/I70931966"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Jian-Yun Nie","raw_affiliation_strings":["Universit\u00e9 de Montr\u00e9al, Montr\u00e9al, PQ, Canada"],"affiliations":[{"raw_affiliation_string":"Universit\u00e9 de Montr\u00e9al, Montr\u00e9al, PQ, Canada","institution_ids":["https://openalex.org/I70931966"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025631695","display_name":"Ji-Rong Wen","orcid":"https://orcid.org/0000-0002-9777-9676"},"institutions":[{"id":"https://openalex.org/I78988378","display_name":"Renmin University of China","ror":"https://ror.org/041pakw92","country_code":"CN","type":"education","lineage":["https://openalex.org/I78988378"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ji-Rong Wen","raw_affiliation_strings":["Renmin University of China & Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China"],"affiliations":[{"raw_affiliation_string":"Renmin University of China & Beijing Key Laboratory of Big Data Management and Analysis Methods, Beijing, China","institution_ids":["https://openalex.org/I78988378"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.639,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":47,"citation_normalized_percentile":{"value":0.841835,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10824","display_name":"Shape Matching and Object Recognition","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10824","display_name":"Shape Matching and Object Recognition","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12016","display_name":"Web Data Extraction and Crawling Techniques","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10627","display_name":"Image Feature Retrieval and Recognition Techniques","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/relevance","display_name":"Relevance (law)","score":0.59236336},{"id":"https://openalex.org/keywords/feature-matching","display_name":"Feature Matching","score":0.519524},{"id":"https://openalex.org/keywords/data-records-mining","display_name":"Data Records Mining","score":0.513551},{"id":"https://openalex.org/keywords/information-retrieval","display_name":"Information Retrieval","score":0.509145},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.502882},{"id":"https://openalex.org/keywords/interest-point-detectors","display_name":"Interest Point Detectors","score":0.501404},{"id":"https://openalex.org/keywords/discriminator","display_name":"Discriminator","score":0.49653226},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.48593107}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8441956},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.65317166},{"id":"https://openalex.org/C2780801425","wikidata":"https://www.wikidata.org/wiki/Q5164392","display_name":"Construct (python library)","level":2,"score":0.64832044},{"id":"https://openalex.org/C158154518","wikidata":"https://www.wikidata.org/wiki/Q7310970","display_name":"Relevance (law)","level":2,"score":0.59236336},{"id":"https://openalex.org/C2780992000","wikidata":"https://www.wikidata.org/wiki/Q17016113","display_name":"Generator (circuit theory)","level":3,"score":0.57577974},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.5581692},{"id":"https://openalex.org/C2779803651","wikidata":"https://www.wikidata.org/wiki/Q5282088","display_name":"Discriminator","level":3,"score":0.49653226},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.48593107},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.48373845},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.46353272},{"id":"https://openalex.org/C37736160","wikidata":"https://www.wikidata.org/wiki/Q1801315","display_name":"Adversarial system","level":2,"score":0.43460658},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.42344105},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.4173088},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32612386},{"id":"https://openalex.org/C163258240","wikidata":"https://www.wikidata.org/wiki/Q25342","display_name":"Power (physics)","level":2,"score":0.109436214},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C94915269","wikidata":"https://www.wikidata.org/wiki/Q1834857","display_name":"Detector","level":2,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3331184.3331218","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.69,"id":"https://metadata.un.org/sdg/10","display_name":"Reduced inequalities"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":38,"referenced_works":["https://openalex.org/W1546897512","https://openalex.org/W1966443646","https://openalex.org/W1979809564","https://openalex.org/W1980617223","https://openalex.org/W1992549066","https://openalex.org/W1993378086","https://openalex.org/W2064675550","https://openalex.org/W2099471712","https://openalex.org/W2105059961","https://openalex.org/W2108279663","https://openalex.org/W2109677301","https://openalex.org/W2118286847","https://openalex.org/W2120724560","https://openalex.org/W2125682643","https://openalex.org/W2131876387","https://openalex.org/W2135500808","https://openalex.org/W2136189984","https://openalex.org/W2139873966","https://openalex.org/W2142920810","https://openalex.org/W2143331230","https://openalex.org/W2145413874","https://openalex.org/W2152314154","https://openalex.org/W2168717408","https://openalex.org/W2171392812","https://openalex.org/W2171806843","https://openalex.org/W2296114340","https://openalex.org/W2564434159","https://openalex.org/W2582836203","https://openalex.org/W2616969219","https://openalex.org/W2745673470","https://openalex.org/W2774514250","https://openalex.org/W2788210317","https://openalex.org/W2886684409","https://openalex.org/W2897050313","https://openalex.org/W2897055093","https://openalex.org/W2964268978","https://openalex.org/W3101023724","https://openalex.org/W3122775348"],"related_works":["https://openalex.org/W4381885966","https://openalex.org/W4293320219","https://openalex.org/W4283584549","https://openalex.org/W3151498616","https://openalex.org/W3110074278","https://openalex.org/W2998859928","https://openalex.org/W2995777218","https://openalex.org/W2953246223","https://openalex.org/W2618858825","https://openalex.org/W2554314924"],"abstract_inverted_index":{"Personalized":[0],"search":[1,42,164],"aims":[2],"to":[3,7,26,44,61,65,100,104,110,116,126,136],"adapt":[4],"document":[5],"ranking":[6],"user's":[8],"personal":[9,57],"interests.":[10],"Traditionally,":[11],"this":[12,77],"is":[13],"done":[14],"by":[15],"extracting":[16],"click":[17],"and":[18,73,122],"topical":[19],"features":[20],"from":[21,161],"historical":[22],"data":[23,58,106,160],"in":[24,40,140],"order":[25],"construct":[27,137],"a":[28,82,153,162],"user":[29],"profile.":[30],"In":[31,76],"recent":[32],"years,":[33],"deep":[34,62],"learning":[35,63],"has":[36],"been":[37],"successfully":[38],"used":[39],"personalized":[41,68,89,118],"due":[43],"its":[45],"ability":[46],"of":[47,55,93,120,130,155],"automatic":[48],"feature":[49],"learning.":[50],"However,":[51],"the":[52,67,98,114,124,128,138,141,147],"small":[53],"amount":[54],"noisy":[56],"poses":[59],"challenges":[60],"models":[64,169],"learn":[66,127],"classification":[69],"boundary":[70],"between":[71],"relevant":[72,131],"irrelevant":[74],"results.":[75],"paper,":[78],"we":[79,96],"propose":[80],"PSGAN,":[81],"Generative":[83],"Adversarial":[84],"Network":[85],"(GAN)":[86],"framework":[87,142],"for":[88],"search.":[90],"By":[91],"means":[92],"adversarial":[94],"training,":[95],"enforce":[97],"model":[99],"pay":[101],"more":[102],"attention":[103],"training":[105],"that":[107,167],"are":[108,143],"difficult":[109],"distinguish.":[111],"We":[112],"use":[113,123],"discriminator":[115],"evaluate":[117],"relevance":[119],"documents":[121],"generator":[125,139],"distribution":[129],"documents.":[132],"Two":[133],"alternative":[134],"ways":[135],"tested:":[144],"based":[145,151],"on":[146,152,159],"current":[148],"query":[149],"or":[150],"set":[154],"generated":[156],"queries.":[157],"Experiments":[158],"commercial":[163],"engine":[165],"show":[166],"our":[168],"can":[170],"yield":[171],"significant":[172],"improvements":[173],"over":[174],"state-of-the-art":[175],"models.":[176]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2955887579","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":10},{"year":2021,"cited_by_count":18},{"year":2020,"cited_by_count":11}],"updated_date":"2024-11-30T14:17:20.811512","created_date":"2019-07-12"}