{"id":"https://openalex.org/W2966158556","doi":"https://doi.org/10.1145/3330482.3330509","title":"Research on Small Sample Target Detection Technology in Natural Scenes","display_name":"Research on Small Sample Target Detection Technology in Natural Scenes","publication_year":2019,"publication_date":"2019-04-19","ids":{"openalex":"https://openalex.org/W2966158556","doi":"https://doi.org/10.1145/3330482.3330509","mag":"2966158556"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3330482.3330509","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102003367","display_name":"Zhen Guo","orcid":"https://orcid.org/0000-0003-3967-4304"},"institutions":[{"id":"https://openalex.org/I5343935","display_name":"Guilin University of Electronic Technology","ror":"https://ror.org/05arjae42","country_code":"CN","type":"funder","lineage":["https://openalex.org/I5343935"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhen Guo","raw_affiliation_strings":["Guangxi Key Laboratory of Trusted Software of Guilin University of Electronic Technology, Guilin, Guangxi, China"],"affiliations":[{"raw_affiliation_string":"Guangxi Key Laboratory of Trusted Software of Guilin University of Electronic Technology, Guilin, Guangxi, China","institution_ids":["https://openalex.org/I5343935"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100711018","display_name":"Jinlong Chen","orcid":"https://orcid.org/0000-0002-9818-3102"},"institutions":[{"id":"https://openalex.org/I5343935","display_name":"Guilin University of Electronic Technology","ror":"https://ror.org/05arjae42","country_code":"CN","type":"funder","lineage":["https://openalex.org/I5343935"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jinlong Chen","raw_affiliation_strings":["Guangxi Key Laboratory of Trusted Software of Guilin University of Electronic Technology, Guilin, Guangxi, China"],"affiliations":[{"raw_affiliation_string":"Guangxi Key Laboratory of Trusted Software of Guilin University of Electronic Technology, Guilin, Guangxi, China","institution_ids":["https://openalex.org/I5343935"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5108361021","display_name":"Minghao Yang","orcid":"https://orcid.org/0000-0001-5397-3576"},"institutions":[{"id":"https://openalex.org/I5343935","display_name":"Guilin University of Electronic Technology","ror":"https://ror.org/05arjae42","country_code":"CN","type":"funder","lineage":["https://openalex.org/I5343935"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Minghao Yang","raw_affiliation_strings":["Guangxi Key Laboratory of Trusted Software of Guilin University of Electronic Technology, Guilin, Guangxi, China"],"affiliations":[{"raw_affiliation_string":"Guangxi Key Laboratory of Trusted Software of Guilin University of Electronic Technology, Guilin, Guangxi, China","institution_ids":["https://openalex.org/I5343935"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":61},"biblio":{"volume":null,"issue":null,"first_page":"231","last_page":"235"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11307","display_name":"Domain Adaptation and Few-Shot Learning","score":0.9974,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Advanced Neural Network Applications","score":0.9924,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.6731157},{"id":"https://openalex.org/keywords/adaboost","display_name":"AdaBoost","score":0.6548102},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.49330464}],"concepts":[{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.77393365},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.76963246},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6752648},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.6731157},{"id":"https://openalex.org/C141404830","wikidata":"https://www.wikidata.org/wiki/Q2823869","display_name":"AdaBoost","level":3,"score":0.6548102},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.557347},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.49330464},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.4824796},{"id":"https://openalex.org/C2776608160","wikidata":"https://www.wikidata.org/wiki/Q4785462","display_name":"Natural (archaeology)","level":2,"score":0.4757221},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.45265737},{"id":"https://openalex.org/C2778755073","wikidata":"https://www.wikidata.org/wiki/Q10858537","display_name":"Scale (ratio)","level":2,"score":0.43588674},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.15919033},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C166957645","wikidata":"https://www.wikidata.org/wiki/Q23498","display_name":"Archaeology","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C95457728","wikidata":"https://www.wikidata.org/wiki/Q309","display_name":"History","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3330482.3330509","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Reduced inequalities","score":0.56,"id":"https://metadata.un.org/sdg/10"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":2,"referenced_works":["https://openalex.org/W2164598857","https://openalex.org/W2165698076"],"related_works":["https://openalex.org/W4312843811","https://openalex.org/W4293699968","https://openalex.org/W4293226380","https://openalex.org/W3112414093","https://openalex.org/W3039673966","https://openalex.org/W2923621274","https://openalex.org/W2327035729","https://openalex.org/W2101918547","https://openalex.org/W2035096001","https://openalex.org/W2002351707"],"abstract_inverted_index":{"In":[0,39,58],"order":[1],"to":[2,26,54,68,87],"accurately":[3],"detect":[4,27,55,116],"the":[5,16,22,36,40,47,51,56,59,71,89,93,97],"target":[6,74,98],"in":[7,35,76],"a":[8,29],"small":[9,30,105,119],"number":[10,31],"of":[11,32,73,92],"samples,":[12],"this":[13],"paper":[14],"uses":[15],"traditional":[17,41],"machine":[18,42],"learning":[19,24,43,61,90],"method":[20,25,53],"and":[21,50,83,95],"migration":[23,60],"under":[28,104,118],"sample":[33,106,120],"conditions":[34],"natural":[37,77],"scene.":[38],"method,":[44,62],"we":[45,63],"use":[46,64],"haar":[48],"feature":[49],"AdaBoost":[52],"target.":[57],"convolutional":[65],"neural":[66],"network":[67],"quickly":[69],"learn":[70,96],"characteristics":[72],"objects":[75],"scenes,":[78],"adopt":[79],"fine-tuning,":[80],"segmentation":[81],"training":[82],"multi-scale":[84],"combination":[85],"strategies":[86],"enhance":[88],"ability":[91],"network,":[94],"features":[99],"as":[100,102],"much":[101],"possible":[103],"conditions.":[107,121],"Experiments":[108],"show":[109],"that":[110],"these":[111],"two":[112],"methods":[113],"can":[114],"effectively":[115],"targets":[117]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2966158556","counts_by_year":[],"updated_date":"2025-01-31T20:25:22.348233","created_date":"2019-08-13"}