{"id":"https://openalex.org/W2945558825","doi":"https://doi.org/10.1145/3316781.3324696","title":"ReForm","display_name":"ReForm","publication_year":2019,"publication_date":"2019-05-23","ids":{"openalex":"https://openalex.org/W2945558825","doi":"https://doi.org/10.1145/3316781.3324696","mag":"2945558825"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3316781.3324696","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5030027584","display_name":"Zirui Xu","orcid":"https://orcid.org/0000-0002-3556-9358"},"institutions":[{"id":"https://openalex.org/I162714631","display_name":"George Mason University","ror":"https://ror.org/02jqj7156","country_code":"US","type":"education","lineage":["https://openalex.org/I162714631"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zirui Xu","raw_affiliation_strings":["George Mason University, Fairfax, Virginia"],"affiliations":[{"raw_affiliation_string":"George Mason University, Fairfax, Virginia","institution_ids":["https://openalex.org/I162714631"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5103085687","display_name":"Fuxun Yu","orcid":"https://orcid.org/0000-0002-4880-6658"},"institutions":[{"id":"https://openalex.org/I162714631","display_name":"George Mason University","ror":"https://ror.org/02jqj7156","country_code":"US","type":"education","lineage":["https://openalex.org/I162714631"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Fuxun Yu","raw_affiliation_strings":["George Mason University, Fairfax, Virginia"],"affiliations":[{"raw_affiliation_string":"George Mason University, Fairfax, Virginia","institution_ids":["https://openalex.org/I162714631"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100767202","display_name":"Chenchen Liu","orcid":"https://orcid.org/0000-0001-7749-0640"},"institutions":[{"id":"https://openalex.org/I16944753","display_name":"Clarkson University","ror":"https://ror.org/03rwgpn18","country_code":"US","type":"education","lineage":["https://openalex.org/I16944753"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Chenchen Liu","raw_affiliation_strings":["Clarkson University, Potsdam, New York"],"affiliations":[{"raw_affiliation_string":"Clarkson University, Potsdam, New York","institution_ids":["https://openalex.org/I16944753"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100441957","display_name":"Xiang Chen","orcid":"https://orcid.org/0000-0003-2790-976X"},"institutions":[{"id":"https://openalex.org/I162714631","display_name":"George Mason University","ror":"https://ror.org/02jqj7156","country_code":"US","type":"education","lineage":["https://openalex.org/I162714631"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xiang Chen","raw_affiliation_strings":["George Mason University, Fairfax, Virginia"],"affiliations":[{"raw_affiliation_string":"George Mason University, Fairfax, Virginia","institution_ids":["https://openalex.org/I162714631"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.218,"has_fulltext":false,"cited_by_count":27,"citation_normalized_percentile":{"value":0.999873,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10054","display_name":"Parallel Computing and Performance Optimization","score":0.9933,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/control-reconfiguration","display_name":"Control reconfiguration","score":0.6006409},{"id":"https://openalex.org/keywords/performance-optimization","display_name":"Performance Optimization","score":0.538116},{"id":"https://openalex.org/keywords/computation-offloading","display_name":"Computation offloading","score":0.4427071}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.83724475},{"id":"https://openalex.org/C105339364","wikidata":"https://www.wikidata.org/wiki/Q2297740","display_name":"Software deployment","level":2,"score":0.61786306},{"id":"https://openalex.org/C119701452","wikidata":"https://www.wikidata.org/wiki/Q5165881","display_name":"Control reconfiguration","level":2,"score":0.6006409},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.573534},{"id":"https://openalex.org/C120314980","wikidata":"https://www.wikidata.org/wiki/Q180634","display_name":"Distributed computing","level":1,"score":0.57317847},{"id":"https://openalex.org/C186967261","wikidata":"https://www.wikidata.org/wiki/Q5082128","display_name":"Mobile device","level":2,"score":0.54467607},{"id":"https://openalex.org/C82876162","wikidata":"https://www.wikidata.org/wiki/Q17096504","display_name":"Latency (audio)","level":2,"score":0.5350766},{"id":"https://openalex.org/C2778476105","wikidata":"https://www.wikidata.org/wiki/Q628539","display_name":"Workload","level":2,"score":0.5306797},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.52365535},{"id":"https://openalex.org/C2781041963","wikidata":"https://www.wikidata.org/wiki/Q18348618","display_name":"Computation offloading","level":4,"score":0.4427071},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.43238357},{"id":"https://openalex.org/C206345919","wikidata":"https://www.wikidata.org/wiki/Q20380951","display_name":"Resource (disambiguation)","level":2,"score":0.41031295},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.32658997},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2093803},{"id":"https://openalex.org/C2778456923","wikidata":"https://www.wikidata.org/wiki/Q5337692","display_name":"Edge computing","level":3,"score":0.14651495},{"id":"https://openalex.org/C31258907","wikidata":"https://www.wikidata.org/wiki/Q1301371","display_name":"Computer network","level":1,"score":0.13498032},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.11590475},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C81860439","wikidata":"https://www.wikidata.org/wiki/Q251212","display_name":"Internet of Things","level":2,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3316781.3324696","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W1845051632","https://openalex.org/W1996901117","https://openalex.org/W2123469553","https://openalex.org/W2164278908","https://openalex.org/W2279098554","https://openalex.org/W2319920447","https://openalex.org/W2402144811","https://openalex.org/W2495112539","https://openalex.org/W2495425901","https://openalex.org/W2531409750","https://openalex.org/W2554302513","https://openalex.org/W2612445135","https://openalex.org/W2618530766","https://openalex.org/W2860338957","https://openalex.org/W2883780447","https://openalex.org/W2886851211","https://openalex.org/W2889185260","https://openalex.org/W2897268228","https://openalex.org/W2902661385","https://openalex.org/W2953384591","https://openalex.org/W2962861284","https://openalex.org/W2962965870","https://openalex.org/W2963882470","https://openalex.org/W2964217527","https://openalex.org/W2964299589","https://openalex.org/W3118608800"],"related_works":["https://openalex.org/W4250547108","https://openalex.org/W2357657342","https://openalex.org/W2165832238","https://openalex.org/W2153432761","https://openalex.org/W2152623100","https://openalex.org/W2142042635","https://openalex.org/W2133942601","https://openalex.org/W2103296973","https://openalex.org/W1988127757","https://openalex.org/W1580144672"],"abstract_inverted_index":{"Although":[0],"the":[1,14,23,34,57,64],"Deep":[2],"Neural":[3],"Network":[4],"(DNN)":[5],"technique":[6],"has":[7,149],"been":[8,30],"widely":[9],"applied":[10],"in":[11,44,52,62,89,186],"various":[12,138],"applications,":[13],"DNN-based":[15],"applications":[16],"are":[17,42],"still":[18],"too":[19],"computationally":[20],"intensive":[21],"for":[22,131],"resource-constrained":[24],"mobile":[25,103,133,169],"devices.":[26],"Many":[27],"works":[28,68],"have":[29],"proposed":[31],"to":[32,137,167],"optimize":[33],"DNN":[35,59,66,98,104,129,165],"computation":[36,79,142,179],"performance,":[37],"but":[38],"most":[39,194],"of":[40],"them":[41],"limited":[43],"an":[45],"algorithmic":[46],"perspective,":[47],"ignoring":[48],"certain":[49],"computing":[50,105,191],"issues":[51],"practical":[53,132],"deployment.":[54],"To":[55],"achieve":[56],"comprehensive":[58],"performance":[60],"enhancement":[61],"practice,":[63],"expected":[65],"optimization":[67,99,152,157],"should":[69],"closely":[70],"cooperate":[71],"with":[72,135,171,182],"specific":[73],"hardware":[74],"and":[75,85,107,124,140,189,201],"system":[76],"constraints":[77],"(i.e.":[78,112],"capacity,":[80],"energy":[81,203],"cost,":[82],"memory":[83],"occupancy,":[84],"inference":[86],"latency).":[87],"Therefore,":[88],"this":[90],"work,":[91],"we":[92],"propose":[93],"ReForm":[94,121,148,160,176],"--":[95],"a":[96,127,164],"resource-aware":[97,156],"framework.":[100],"Through":[101],"thorough":[102],"analysis":[106],"innovative":[108],"model":[109,116,130,166],"reconfiguration":[110],"schemes":[111],"ADMM":[113],"based":[114],"static":[115,139,188],"fine-tuning,":[117],"dynamically":[118],"selective":[119],"computing),":[120],"can":[122,161],"efficiently":[123],"effectively":[125],"reconfigure":[126,163],"pre-trained":[128],"deployment":[134],"regards":[136],"dynamic":[141,190],"resource":[143,173],"constraints.":[144,174],"Experiments":[145],"show":[146],"that":[147],"~3.5\u00d7":[150],"faster":[151],"speed":[153],"than":[154],"state-of-the-art":[155],"method.":[158],"Also,":[159],"effective":[162],"different":[168],"devices":[170],"distinct":[172],"Moreover,":[175],"achieves":[177],"satisfying":[178],"cost":[180],"reduction":[181],"ignorable":[183],"accuracy":[184],"drop":[185],"both":[187],"scenarios":[192],"(at":[193],"18%":[195],"workload,":[196],"16.23%":[197],"latency,":[198],"48.63%":[199],"memory,":[200],"21.5%":[202],"enhancement).":[204]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2945558825","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":6},{"year":2022,"cited_by_count":4},{"year":2021,"cited_by_count":7},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":1}],"updated_date":"2024-11-30T01:38:26.558711","created_date":"2019-05-29"}