{"id":"https://openalex.org/W2945047231","doi":"https://doi.org/10.1145/3316781.3317873","title":"On the Complexity Reduction of Dense Layers from O(N2) to O(NlogN) with Cyclic Sparsely Connected Layers","display_name":"On the Complexity Reduction of Dense Layers from O(N2) to O(NlogN) with Cyclic Sparsely Connected Layers","publication_year":2019,"publication_date":"2019-05-23","ids":{"openalex":"https://openalex.org/W2945047231","doi":"https://doi.org/10.1145/3316781.3317873","mag":"2945047231"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3316781.3317873","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101892993","display_name":"Morteza Hosseini","orcid":"https://orcid.org/0000-0002-7218-7754"},"institutions":[{"id":"https://openalex.org/I79272384","display_name":"University of Maryland, Baltimore County","ror":"https://ror.org/02qskvh78","country_code":"US","type":"education","lineage":["https://openalex.org/I79272384"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Morteza Hosseini","raw_affiliation_strings":["Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA","institution_ids":["https://openalex.org/I79272384"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011426186","display_name":"Mark Horton","orcid":null},"institutions":[{"id":"https://openalex.org/I79272384","display_name":"University of Maryland, Baltimore County","ror":"https://ror.org/02qskvh78","country_code":"US","type":"education","lineage":["https://openalex.org/I79272384"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Mark Horton","raw_affiliation_strings":["Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA","institution_ids":["https://openalex.org/I79272384"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5084956148","display_name":"Hiren Paneliya","orcid":null},"institutions":[{"id":"https://openalex.org/I79272384","display_name":"University of Maryland, Baltimore County","ror":"https://ror.org/02qskvh78","country_code":"US","type":"education","lineage":["https://openalex.org/I79272384"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hiren Paneliya","raw_affiliation_strings":["Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA","institution_ids":["https://openalex.org/I79272384"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5061729841","display_name":"Uttej Kallakuri","orcid":"https://orcid.org/0009-0004-1150-3903"},"institutions":[{"id":"https://openalex.org/I79272384","display_name":"University of Maryland, Baltimore County","ror":"https://ror.org/02qskvh78","country_code":"US","type":"education","lineage":["https://openalex.org/I79272384"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Uttej Kallakuri","raw_affiliation_strings":["Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA","institution_ids":["https://openalex.org/I79272384"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047382437","display_name":"Houman Homayoun","orcid":"https://orcid.org/0000-0001-8904-4699"},"institutions":[{"id":"https://openalex.org/I162714631","display_name":"George Mason University","ror":"https://ror.org/02jqj7156","country_code":"US","type":"education","lineage":["https://openalex.org/I162714631"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Houman Homayoun","raw_affiliation_strings":["Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, George Mason University, Fairfax, VA, USA","institution_ids":["https://openalex.org/I162714631"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5084010501","display_name":"Tinoosh Mohsenin","orcid":"https://orcid.org/0000-0001-5551-2124"},"institutions":[{"id":"https://openalex.org/I79272384","display_name":"University of Maryland, Baltimore County","ror":"https://ror.org/02qskvh78","country_code":"US","type":"education","lineage":["https://openalex.org/I79272384"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Tinoosh Mohsenin","raw_affiliation_strings":["Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA","institution_ids":["https://openalex.org/I79272384"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.947,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":18,"citation_normalized_percentile":{"value":0.999873,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12303","display_name":"Tensor Decompositions and Applications in Multilinear Algebra","score":0.9971,"subfield":{"id":"https://openalex.org/subfields/2605","display_name":"Computational Mathematics"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.6580489},{"id":"https://openalex.org/keywords/pruning","display_name":"Pruning","score":0.6119528},{"id":"https://openalex.org/keywords/clustering-analysis","display_name":"Clustering Analysis","score":0.517042},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.512324},{"id":"https://openalex.org/keywords/neural-network-architectures","display_name":"Neural Network Architectures","score":0.506338},{"id":"https://openalex.org/keywords/model-compression","display_name":"Model Compression","score":0.504253},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.50012}],"concepts":[{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.7471961},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.73769474},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.66624594},{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.6580489},{"id":"https://openalex.org/C108010975","wikidata":"https://www.wikidata.org/wiki/Q500094","display_name":"Pruning","level":2,"score":0.6119528},{"id":"https://openalex.org/C2779227376","wikidata":"https://www.wikidata.org/wiki/Q6505497","display_name":"Layer (electronics)","level":2,"score":0.51508635},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.5066141},{"id":"https://openalex.org/C45374587","wikidata":"https://www.wikidata.org/wiki/Q12525525","display_name":"Computation","level":2,"score":0.47500503},{"id":"https://openalex.org/C75165309","wikidata":"https://www.wikidata.org/wiki/Q2258979","display_name":"Search engine indexing","level":2,"score":0.45585498},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.43174118},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.38643032},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.18030205},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16931435},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.13110843},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.09593105},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.0},{"id":"https://openalex.org/C6557445","wikidata":"https://www.wikidata.org/wiki/Q173113","display_name":"Agronomy","level":1,"score":0.0},{"id":"https://openalex.org/C159985019","wikidata":"https://www.wikidata.org/wiki/Q181790","display_name":"Composite material","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3316781.3317873","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7","score":0.89}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1798945469","https://openalex.org/W1919191429","https://openalex.org/W1993482030","https://openalex.org/W2619096655","https://openalex.org/W2759684853","https://openalex.org/W2799137784","https://openalex.org/W2806076314","https://openalex.org/W2806476189","https://openalex.org/W2808739938","https://openalex.org/W2884180697","https://openalex.org/W2884780389","https://openalex.org/W2911037141","https://openalex.org/W2914775031","https://openalex.org/W2922747391","https://openalex.org/W2945027786","https://openalex.org/W2963674932","https://openalex.org/W2963981420","https://openalex.org/W3104393472","https://openalex.org/W4289441319"],"related_works":["https://openalex.org/W992687842","https://openalex.org/W4401278057","https://openalex.org/W4386603768","https://openalex.org/W4380078352","https://openalex.org/W4300560302","https://openalex.org/W3088108839","https://openalex.org/W2950475743","https://openalex.org/W2886711096","https://openalex.org/W2750384547","https://openalex.org/W2295196644"],"abstract_inverted_index":{"In":[0,55],"deep":[1],"neural":[2],"networks":[3],"(DNNs),":[4],"model":[5,27],"size":[6,28],"is":[7,173,220],"an":[8,76,128,236,281],"important":[9],"factor":[10],"affecting":[11],"performance,":[12],"energy":[13,51],"efficiency":[14],"and":[15,53,120,154,192,235,250,253,258,291],"scalability.":[16],"Recent":[17],"works":[18],"on":[19,190,194,255],"weight":[20],"pruning":[21,224],"have":[22],"shown":[23],"significant":[24],"reduction":[25],"in":[26,34,114,140,287],"at":[29,296],"the":[30,35,90,93,118,147,160,170,182,270,275,297],"expense":[31],"of":[32,69,85,92,102,122,156,169,215],"irregularity":[33],"DNN":[36,95],"architecture,":[37],"which":[38,112,219],"necessitates":[39],"additional":[40],"indexing":[41,181],"memory":[42],"to":[43,108,130,158,209,222,231,241],"address":[44],"non-zero":[45,183],"weights,":[46],"thereby":[47],"increasing":[48,146],"chip":[49],"size,":[50],"consumption":[52],"delays.":[54],"this":[56],"paper,":[57],"we":[58,205],"propose":[59],"cyclic":[60],"sparsely":[61],"connected":[62,80],"(CSC)":[63],"layers,":[64,106,111,204,234],"with":[65,133,137,202,280],"a":[66,103,141,164,213],"memory/computation":[67],"complexity":[68],"O(NlogN),":[70],"that":[71,174,197,269],"can":[72,88,206],"be":[73,177],"used":[74],"as":[75,109,152],"overlay":[77],"for":[78,180,263],"fully":[79,251],"(FC)":[81],"layers":[82,99,135,139,149,172,201,247],"whose":[83],"number":[84,155],"parameters,":[86],"O(N2),":[87],"dominate":[89],"parameters":[91],"entire":[94],"model.":[96,265],"The":[97,266],"CSC":[98,124,138,148,171,203,233,272],"are":[100,248],"composed":[101],"few":[104],"sequential":[105],"referred":[107],"support":[110],"result":[113],"full":[115],"connectivity":[116,153],"between":[117],"Inputs":[119],"Outputs":[121],"each":[123],"layer.":[125],"We":[126],"introduce":[127],"algorithm":[129],"train":[131],"models":[132],"FC":[134,200,246],"replaced":[136],"bottom-up":[142],"approach":[143],"by":[144,198,285],"incrementally":[145],"characteristics":[150],"such":[151],"synapses,":[157],"achieve":[159,207],"desired":[161],"accuracy":[162,217],"given":[163],"compression":[165,211,283],"rate.":[166],"One":[167],"advantage":[168],"there":[175],"will":[176],"no":[178],"requirement":[179],"weights.":[184],"Our":[185],"experimental":[186],"results":[187,267],"using":[188],"AlexNet":[189],"ImageNet":[191],"LeNet300100":[193,264],"MNIST":[195],"indicate":[196,268],"substituting":[199],"10\u00d7":[208],"46\u00d7":[210],"within":[212],"margin":[214],"2%":[216],"loss,":[218],"comparable":[221],"non-structural":[223],"methods.":[225],"A":[226],"scalable":[227,238],"parallel":[228,239],"hardware":[229,273],"architecture":[230,240,279],"implement":[232,243],"equivalent":[237],"efficiently":[242],"non-structurally":[244,277],"pruned":[245,278],"designed":[249],"placed":[252],"routed":[254],"Artix-7":[256],"FPGA":[257],"ASIC":[259],"65nm":[260],"CMOS":[261],"technology":[262],"proposed":[271],"outperforms":[274],"conventional":[276],"equal":[282],"rate":[284],"~2\u00d7":[286],"power,":[288],"energy,":[289],"area":[290],"resource":[292],"utilization":[293],"when":[294],"running":[295],"same":[298],"frequency.":[299]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2945047231","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2022,"cited_by_count":1},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":7},{"year":2019,"cited_by_count":2}],"updated_date":"2024-11-28T08:09:06.690222","created_date":"2019-05-29"}