{"id":"https://openalex.org/W2945759188","doi":"https://doi.org/10.1145/3316781.3317838","title":"High Performance Graph Convolutional Networks with Applications in Testability Analysis","display_name":"High Performance Graph Convolutional Networks with Applications in Testability Analysis","publication_year":2019,"publication_date":"2019-05-23","ids":{"openalex":"https://openalex.org/W2945759188","doi":"https://doi.org/10.1145/3316781.3317838","mag":"2945759188"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3316781.3317838","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5071995111","display_name":"Yuzhe Ma","orcid":"https://orcid.org/0000-0002-3612-4182"},"institutions":[{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"education","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Yuzhe Ma","raw_affiliation_strings":["CUHK"],"affiliations":[{"raw_affiliation_string":"CUHK","institution_ids":["https://openalex.org/I889458895"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5029928585","display_name":"Haoxing Ren","orcid":"https://orcid.org/0000-0003-1028-3860"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Haoxing Ren","raw_affiliation_strings":["NVIDIA"],"affiliations":[{"raw_affiliation_string":"NVIDIA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5010156116","display_name":"Brucek Khailany","orcid":"https://orcid.org/0000-0002-7584-3489"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Brucek Khailany","raw_affiliation_strings":["NVIDIA"],"affiliations":[{"raw_affiliation_string":"NVIDIA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014255746","display_name":"Harbinder Sikka","orcid":null},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Harbinder Sikka","raw_affiliation_strings":["NVIDIA"],"affiliations":[{"raw_affiliation_string":"NVIDIA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5012719173","display_name":"Lijuan Luo","orcid":"https://orcid.org/0000-0002-3702-372X"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Lijuan Luo","raw_affiliation_strings":["NVIDIA"],"affiliations":[{"raw_affiliation_string":"NVIDIA","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5019990510","display_name":"Karthikeyan Natarajan","orcid":"https://orcid.org/0000-0001-8018-8602"},"institutions":[],"countries":[],"is_corresponding":false,"raw_author_name":"Karthikeyan Natarajan","raw_affiliation_strings":["NVIDIA"],"affiliations":[{"raw_affiliation_string":"NVIDIA","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5051340429","display_name":"Bei Yu","orcid":"https://orcid.org/0000-0001-6406-4810"},"institutions":[{"id":"https://openalex.org/I889458895","display_name":"University of Hong Kong","ror":"https://ror.org/02zhqgq86","country_code":"HK","type":"education","lineage":["https://openalex.org/I889458895"]}],"countries":["HK"],"is_corresponding":false,"raw_author_name":"Bei Yu","raw_affiliation_strings":["CUHK"],"affiliations":[{"raw_affiliation_string":"CUHK","institution_ids":["https://openalex.org/I889458895"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":6.783,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":86,"citation_normalized_percentile":{"value":0.999156,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11032","display_name":"VLSI and Analog Circuit Testing","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11032","display_name":"VLSI and Analog Circuit Testing","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/1708","display_name":"Hardware and Architecture"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T14117","display_name":"Integrated Circuits and Semiconductor Failure Analysis","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11522","display_name":"VLSI and FPGA Design Techniques","score":0.9948,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/netlist","display_name":"Netlist","score":0.8311028},{"id":"https://openalex.org/keywords/control-flow-graph","display_name":"Control flow graph","score":0.43251488}],"concepts":[{"id":"https://openalex.org/C177650935","wikidata":"https://www.wikidata.org/wiki/Q1760303","display_name":"Netlist","level":2,"score":0.8311028},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7353374},{"id":"https://openalex.org/C51234621","wikidata":"https://www.wikidata.org/wiki/Q2149495","display_name":"Testability","level":2,"score":0.62449145},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.55677265},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.5241511},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.46185884},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.45304042},{"id":"https://openalex.org/C27458966","wikidata":"https://www.wikidata.org/wiki/Q1187693","display_name":"Control flow graph","level":2,"score":0.43251488},{"id":"https://openalex.org/C115901376","wikidata":"https://www.wikidata.org/wiki/Q184199","display_name":"Automation","level":2,"score":0.41172934},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3645895},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.34326392},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.34136227},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.32895792},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32864138},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.32077125},{"id":"https://openalex.org/C149635348","wikidata":"https://www.wikidata.org/wiki/Q193040","display_name":"Embedded system","level":1,"score":0.140973},{"id":"https://openalex.org/C200601418","wikidata":"https://www.wikidata.org/wiki/Q2193887","display_name":"Reliability engineering","level":1,"score":0.11635673},{"id":"https://openalex.org/C78519656","wikidata":"https://www.wikidata.org/wiki/Q101333","display_name":"Mechanical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3316781.3317838","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","score":0.44,"id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W117146240","https://openalex.org/W1665214252","https://openalex.org/W1953724919","https://openalex.org/W1975748616","https://openalex.org/W1977294468","https://openalex.org/W2106887277","https://openalex.org/W2108913694","https://openalex.org/W2117394347","https://openalex.org/W2134427430","https://openalex.org/W2143286762","https://openalex.org/W2146356977","https://openalex.org/W2151094122","https://openalex.org/W2152190733","https://openalex.org/W2162874773","https://openalex.org/W2186922790","https://openalex.org/W2342398087","https://openalex.org/W2624431344","https://openalex.org/W2794046273","https://openalex.org/W2809465272","https://openalex.org/W2883160951","https://openalex.org/W2899885603","https://openalex.org/W2962756421","https://openalex.org/W2962767366","https://openalex.org/W2963224980","https://openalex.org/W2964015378","https://openalex.org/W3100330855","https://openalex.org/W3100848837","https://openalex.org/W3140592728"],"related_works":["https://openalex.org/W4386694274","https://openalex.org/W4244121214","https://openalex.org/W3162875897","https://openalex.org/W3146543203","https://openalex.org/W2795180100","https://openalex.org/W2373135325","https://openalex.org/W2170314243","https://openalex.org/W2119203629","https://openalex.org/W2099346120","https://openalex.org/W1978458693"],"abstract_inverted_index":{"Applications":[0],"of":[1,22,66,71,96],"deep":[2],"learning":[3,123],"to":[4,12,20,42,80,100,120],"electronic":[5],"design":[6],"automation":[7],"(EDA)":[8],"have":[9,16],"recently":[10],"begun":[11],"emerge,":[13],"although":[14],"they":[15],"mainly":[17],"been":[18],"limited":[19],"processing":[21,34,67],"regular":[23],"structured":[24],"data":[25],"such":[26,48],"as":[27,94],"images.":[28],"However,":[29],"many":[30],"EDA":[31],"problems":[32],"require":[33],"irregular":[35,68],"structures,":[36],"and":[37,152],"it":[38],"can":[39],"be":[40],"non-trivial":[41],"manually":[43],"extract":[44],"important":[45],"features":[46],"in":[47,85,149,156],"cases.":[49],"In":[50],"this":[51],"paper,":[52],"a":[53,86,153],"high":[54],"performance":[55],"graph":[56,69],"convolutional":[57],"network":[58],"(GCN)":[59],"model":[60,116],"is":[61,77,91],"proposed":[62,114,136],"for":[63],"the":[64,107,113,135],"purpose":[65],"representations":[70],"logic":[72],"circuits.":[73],"A":[74],"GCN":[75,89,115],"classifier":[76,90],"firstly":[78],"trained":[79],"predict":[81],"observation":[82,102,137,150],"point":[83,103,138],"candidates":[84],"netlist.":[87],"The":[88],"then":[92],"used":[93],"part":[95],"an":[97,146],"iterative":[98],"process":[99],"propose":[101],"insertion":[104,139],"based":[105],"on":[106,125],"classification":[108],"results.":[109],"Experimental":[110],"results":[111],"show":[112],"has":[117],"superior":[118],"accuracy":[119],"classical":[121],"machine":[122],"models":[124],"difficult-to-observation":[126],"nodes":[127],"prediction.":[128],"Compared":[129],"with":[130,145],"commercial":[131],"testability":[132],"analysis":[133],"tools,":[134],"flow":[140],"achieves":[141],"similar":[142],"fault":[143],"coverage":[144],"11%":[147],"reduction":[148,155],"points":[151],"6%":[154],"test":[157],"pattern":[158],"count.":[159]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2945759188","counts_by_year":[{"year":2024,"cited_by_count":8},{"year":2023,"cited_by_count":19},{"year":2022,"cited_by_count":21},{"year":2021,"cited_by_count":19},{"year":2020,"cited_by_count":14},{"year":2019,"cited_by_count":5}],"updated_date":"2024-12-09T08:25:50.790479","created_date":"2019-05-29"}