{"id":"https://openalex.org/W2963398264","doi":"https://doi.org/10.1145/3316781.3317828","title":"FLightNNs","display_name":"FLightNNs","publication_year":2019,"publication_date":"2019-05-23","ids":{"openalex":"https://openalex.org/W2963398264","doi":"https://doi.org/10.1145/3316781.3317828","mag":"2963398264"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3316781.3317828","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3316781.3317828","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3316781.3317828","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101602646","display_name":"Ruizhou Ding","orcid":"https://orcid.org/0000-0003-4311-3761"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ruizhou Ding","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, U.S.A."],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, U.S.A.","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101673019","display_name":"Zeye Liu","orcid":"https://orcid.org/0000-0003-2516-3423"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zeye Liu","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, U.S.A."],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, U.S.A.","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5013507891","display_name":"Ting-Wu Chin","orcid":"https://orcid.org/0000-0003-2953-0489"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ting-Wu Chin","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, U.S.A."],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, U.S.A.","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5065985595","display_name":"Diana Marculescu","orcid":"https://orcid.org/0000-0002-5734-4221"},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Diana Marculescu","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, U.S.A."],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, U.S.A.","institution_ids":["https://openalex.org/I74973139"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5111967389","display_name":"R.D. Blanton","orcid":null},"institutions":[{"id":"https://openalex.org/I74973139","display_name":"Carnegie Mellon University","ror":"https://ror.org/05x2bcf33","country_code":"US","type":"education","lineage":["https://openalex.org/I74973139"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"R. D. (Shawn) Blanton","raw_affiliation_strings":["Carnegie Mellon University, Pittsburgh, U.S.A."],"affiliations":[{"raw_affiliation_string":"Carnegie Mellon University, Pittsburgh, U.S.A.","institution_ids":["https://openalex.org/I74973139"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.083,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":16,"citation_normalized_percentile":{"value":0.704177,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":89,"max":90},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Deep Learning Models","score":0.9985,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12535","display_name":"Learning with Noisy Labels in Machine Learning","score":0.9966,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/robust-learning","display_name":"Robust Learning","score":0.544445},{"id":"https://openalex.org/keywords/deep-learning","display_name":"Deep Learning","score":0.523902},{"id":"https://openalex.org/keywords/neural-network-architectures","display_name":"Neural Network Architectures","score":0.518132}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.48999825}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3316781.3317828","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3316781.3317828","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3316781.3317828","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3316781.3317828","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.9,"display_name":"Affordable and clean energy","id":"https://metadata.un.org/sdg/7"}],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"1815899"}],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1622676895","https://openalex.org/W2094756095","https://openalex.org/W2242818861","https://openalex.org/W2267635276","https://openalex.org/W2286365479","https://openalex.org/W2289252105","https://openalex.org/W2469490737","https://openalex.org/W2554302513","https://openalex.org/W2612864759","https://openalex.org/W2614392736","https://openalex.org/W2805405547","https://openalex.org/W2810075754","https://openalex.org/W2904295992","https://openalex.org/W2905175929","https://openalex.org/W2962706338","https://openalex.org/W2963000224","https://openalex.org/W2963114950","https://openalex.org/W2963163009","https://openalex.org/W2963374099","https://openalex.org/W2963674932","https://openalex.org/W2963828549","https://openalex.org/W2964121744","https://openalex.org/W2964279778","https://openalex.org/W2982344224"],"related_works":["https://openalex.org/W3004735627","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2350741829","https://openalex.org/W2130043461","https://openalex.org/W2096946506"],"abstract_inverted_index":{"To":[0,59],"improve":[1],"the":[2,19,41,65,87,131],"throughput":[3],"and":[4,55,94,113,174],"energy":[5,198],"efficiency":[6,199],"of":[7,21,34,36,76,89],"Deep":[8],"Neural":[9],"Networks":[10],"(DNNs)":[11],"on":[12,102,134],"customized":[13],"hardware,":[14],"lightweight":[15,119,153,183],"neural":[16,120],"networks":[17,121],"constrain":[18],"weights":[20,101],"DNNs":[22],"to":[23,91,152,165,176,181],"be":[24,45,72,92],"a":[25,48,103,123,166],"limited":[26],"combination":[27],"(denoted":[28],"as":[29],"k":[30,66,90,125,156],"\u03f5":[31],"{1,":[32],"2})":[33],"powers":[35],"2.":[37],"In":[38,82,186],"such":[39],"networks,":[40],"multiply-accumulate":[42],"operation":[43],"can":[44,71,146,194],"replaced":[46],"with":[47,122,155,159],"single":[49],"shift":[50,184],"operation,":[51],"or":[52],"two":[53],"shifts":[54],"an":[56],"add":[57],"operation.":[58],"provide":[60],"even":[61],"more":[62],"design":[63],"flexibility,":[64],"for":[67,79,98,200],"each":[68],"convolutional":[69],"filter":[70],"optimally":[73],"chosen":[74],"instead":[75],"being":[77],"fixed":[78],"every":[80],"filter.":[81],"this":[83],"paper,":[84],"we":[85],"formulate":[86],"selection":[88],"differentiable,":[93],"describe":[95],"model":[96],"training":[97],"determining":[99],"k-based":[100],"per-filter":[104],"basis.":[105],"Over":[106],"46":[107],"FPGA-design":[108],"experiments":[109,189],"involving":[110],"eight":[111],"configurations":[112],"four":[114],"data":[115],"sets":[116],"reveal":[117],"that":[118,144,192],"flexible":[124],"value":[126],"(dubbed":[127],"FLightNNs)":[128],"fully":[129],"utilize":[130],"hardware":[132],"resources":[133],"Field":[135],"Programmable":[136],"Gate":[137],"Arrays":[138],"(FPGAs),":[139],"our":[140,188],"experimental":[141],"results":[142],"show":[143],"FLightNNs":[145,170,193],"achieve":[147,171,195],"2\u00d7":[148,177],"speedup":[149],"when":[150],"compared":[151],"NNs":[154],"=":[157],"2,":[158],"only":[160],"0.1%":[161],"accuracy":[162,173],"degradation.":[163],"Compared":[164],"4-bit":[167],"fixed-point":[168],"quantization,":[169],"higher":[172,196],"up":[175],"inference":[178],"speedup,":[179],"due":[180],"their":[182],"operations.":[185],"addition,":[187],"also":[190],"demonstrate":[191],"computational":[197],"ASIC":[201],"implementation.":[202]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2963398264","counts_by_year":[{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":4},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":5}],"updated_date":"2024-12-01T12:14:29.438220","created_date":"2019-07-30"}