{"id":"https://openalex.org/W2946347869","doi":"https://doi.org/10.1145/3316781.3317796","title":"Deep-DFR","display_name":"Deep-DFR","publication_year":2019,"publication_date":"2019-05-23","ids":{"openalex":"https://openalex.org/W2946347869","doi":"https://doi.org/10.1145/3316781.3317796","mag":"2946347869"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3316781.3317796","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5082108426","display_name":"Kangjun Bai","orcid":"https://orcid.org/0000-0003-4437-0006"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Kangjun Bai","raw_affiliation_strings":["Virginia Tech, Blacksburg, Virginia, USA"],"affiliations":[{"raw_affiliation_string":"Virginia Tech, Blacksburg, Virginia, USA","institution_ids":["https://openalex.org/I859038795"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041955234","display_name":"Qiyuan An","orcid":"https://orcid.org/0000-0003-4712-891X"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Qiyuan An","raw_affiliation_strings":["Virginia Tech, Blacksburg, Virginia, USA"],"affiliations":[{"raw_affiliation_string":"Virginia Tech, Blacksburg, Virginia, USA","institution_ids":["https://openalex.org/I859038795"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5018632091","display_name":"Yang Yi","orcid":"https://orcid.org/0000-0002-1354-0204"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yang Yi","raw_affiliation_strings":["Virginia Tech, Blacksburg, Virginia, USA"],"affiliations":[{"raw_affiliation_string":"Virginia Tech, Blacksburg, Virginia, USA","institution_ids":["https://openalex.org/I859038795"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":0.633,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":13,"citation_normalized_percentile":{"value":0.842408,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":88,"max":89},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"6"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12611","display_name":"Photonic Reservoir Computing for Neural Computation","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12611","display_name":"Photonic Reservoir Computing for Neural Computation","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10581","display_name":"Neuronal Oscillations in Cortical Networks","score":0.992,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.965792},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep neural networks","score":0.65608436},{"id":"https://openalex.org/keywords/brain-inspired-computing","display_name":"Brain-inspired Computing","score":0.559033},{"id":"https://openalex.org/keywords/photonic-reservoir-computing","display_name":"Photonic Reservoir Computing","score":0.538994},{"id":"https://openalex.org/keywords/neuromorphic-computing","display_name":"Neuromorphic Computing","score":0.535916},{"id":"https://openalex.org/keywords/diffractive-optical-neural-networks","display_name":"Diffractive Optical Neural Networks","score":0.527003},{"id":"https://openalex.org/keywords/optoelectronic-reservoir-computing","display_name":"Optoelectronic Reservoir Computing","score":0.522565}],"concepts":[{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.965792},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.8314885},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7203884},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6761381},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.65608436},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.5598746},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.5099956},{"id":"https://openalex.org/C111335779","wikidata":"https://www.wikidata.org/wiki/Q3454686","display_name":"Reduction (mathematics)","level":2,"score":0.47516626},{"id":"https://openalex.org/C2779227376","wikidata":"https://www.wikidata.org/wiki/Q6505497","display_name":"Layer (electronics)","level":2,"score":0.4697305},{"id":"https://openalex.org/C118524514","wikidata":"https://www.wikidata.org/wiki/Q173212","display_name":"Computer architecture","level":1,"score":0.46286306},{"id":"https://openalex.org/C123657996","wikidata":"https://www.wikidata.org/wiki/Q12271","display_name":"Architecture","level":2,"score":0.44498116},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.38888317},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.36717853},{"id":"https://openalex.org/C142362112","wikidata":"https://www.wikidata.org/wiki/Q735","display_name":"Art","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C153349607","wikidata":"https://www.wikidata.org/wiki/Q36649","display_name":"Visual arts","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3316781.3317796","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Affordable and clean energy","score":0.9,"id":"https://metadata.un.org/sdg/7"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":19,"referenced_works":["https://openalex.org/W1552317631","https://openalex.org/W1825077972","https://openalex.org/W1977664984","https://openalex.org/W2021797032","https://openalex.org/W2042489792","https://openalex.org/W2062008996","https://openalex.org/W2094631910","https://openalex.org/W2173520492","https://openalex.org/W2289587704","https://openalex.org/W2335728318","https://openalex.org/W2510726401","https://openalex.org/W2565125333","https://openalex.org/W2585407525","https://openalex.org/W2592389822","https://openalex.org/W2608091720","https://openalex.org/W2787453651","https://openalex.org/W2808865258","https://openalex.org/W2905059955","https://openalex.org/W3102169921"],"related_works":["https://openalex.org/W4385524141","https://openalex.org/W4379744580","https://openalex.org/W4297776111","https://openalex.org/W4288018014","https://openalex.org/W3127679336","https://openalex.org/W3026616975","https://openalex.org/W3018979822","https://openalex.org/W2996058201","https://openalex.org/W2989784533","https://openalex.org/W2946347869"],"abstract_inverted_index":{"Deep":[0],"neural":[1],"networks":[2],"(DNNs),":[3],"the":[4,49,84,97],"brain-like":[5],"machine":[6],"learning":[7,56],"architecture,":[8],"have":[9],"gained":[10],"immense":[11],"success":[12],"in":[13,39],"data-extensive":[14],"applications.":[15],"In":[16],"this":[17],"work,":[18],"a":[19,40,93],"hybrid":[20],"structured":[21],"deep":[22,55],"delayed":[23],"feedback":[24],"reservoir":[25],"(Deep-DFR)":[26],"computing":[27],"model":[28],"is":[29],"proposed":[30,54],"and":[31,62,88],"fabricated.":[32],"Our":[33,64],"Deep-DFR":[34,91],"employs":[35],"memristive":[36],"synapses":[37],"working":[38],"hierarchical":[41],"information":[42],"processing":[43],"fashion":[44],"with":[45,68,76],"DFR":[46],"modules":[47],"as":[48],"readout":[50],"layer,":[51],"leading":[52],"our":[53,90],"structure":[57],"to":[58,101],"be":[59],"both":[60],"depth-in-space":[61],"depth-in-time.":[63],"fabricated":[65],"prototype":[66],"along":[67],"experimental":[69],"results":[70],"demonstrate":[71],"its":[72],"high":[73],"energy":[74],"efficiency":[75],"low":[77],"hardware":[78],"implementation":[79],"cost.":[80],"With":[81],"applications":[82],"on":[83,96],"image":[85],"classification,":[86],"MNIST":[87],"SVHN,":[89],"yields":[92],"1.26~7.69X":[94],"reduction":[95],"testing":[98],"error":[99],"compared":[100],"state-of-the-art":[102],"DNN":[103],"designs.":[104]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2946347869","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":6},{"year":2019,"cited_by_count":2}],"updated_date":"2024-11-22T01:30:49.837665","created_date":"2019-05-29"}