{"id":"https://openalex.org/W2946659370","doi":"https://doi.org/10.1145/3316781.3317739","title":"A Configurable Multi-Precision CNN Computing Framework Based on Single Bit RRAM","display_name":"A Configurable Multi-Precision CNN Computing Framework Based on Single Bit RRAM","publication_year":2019,"publication_date":"2019-05-23","ids":{"openalex":"https://openalex.org/W2946659370","doi":"https://doi.org/10.1145/3316781.3317739","mag":"2946659370"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3316781.3317739","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3316781.3317739","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://dl.acm.org/doi/pdf/10.1145/3316781.3317739","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5103138440","display_name":"Zhenhua Zhu","orcid":"https://orcid.org/0009-0007-9259-7180"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhenhua Zhu","raw_affiliation_strings":["Dept. of EE, BNRist, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Dept. of EE, BNRist, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000640882","display_name":"Hanbo Sun","orcid":"https://orcid.org/0000-0002-7875-2064"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Hanbo Sun","raw_affiliation_strings":["Dept. of EE, BNRist, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Dept. of EE, BNRist, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5021398655","display_name":"Yujun Lin","orcid":"https://orcid.org/0000-0001-6314-1722"},"institutions":[{"id":"https://openalex.org/I63966007","display_name":"Massachusetts Institute of Technology","ror":"https://ror.org/042nb2s44","country_code":"US","type":"education","lineage":["https://openalex.org/I63966007"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Yujun Lin","raw_affiliation_strings":["Dept. of EECS, Massachusetts Institute of Technology"],"affiliations":[{"raw_affiliation_string":"Dept. of EECS, Massachusetts Institute of Technology","institution_ids":["https://openalex.org/I63966007"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5015946486","display_name":"Guohao Dai","orcid":"https://orcid.org/0000-0003-0849-3252"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Guohao Dai","raw_affiliation_strings":["Dept. of EE, BNRist, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Dept. of EE, BNRist, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5008190519","display_name":"Lixue Xia","orcid":"https://orcid.org/0000-0002-7731-7028"},"institutions":[{"id":"https://openalex.org/I4210095624","display_name":"Alibaba Group (United States)","ror":"https://ror.org/00rn0m335","country_code":"US","type":"company","lineage":["https://openalex.org/I4210095624","https://openalex.org/I45928872"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Lixue Xia","raw_affiliation_strings":["Alibaba Group"],"affiliations":[{"raw_affiliation_string":"Alibaba Group","institution_ids":["https://openalex.org/I4210095624"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5070926896","display_name":"Song Han","orcid":"https://orcid.org/0000-0002-4186-7618"},"institutions":[{"id":"https://openalex.org/I63966007","display_name":"Massachusetts Institute of Technology","ror":"https://ror.org/042nb2s44","country_code":"US","type":"education","lineage":["https://openalex.org/I63966007"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Song Han","raw_affiliation_strings":["Dept. of EECS, Massachusetts Institute of Technology"],"affiliations":[{"raw_affiliation_string":"Dept. of EECS, Massachusetts Institute of Technology","institution_ids":["https://openalex.org/I63966007"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100445061","display_name":"Yu Wang","orcid":"https://orcid.org/0000-0001-6108-5157"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yu Wang","raw_affiliation_strings":["Dept. of EE, BNRist, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Dept. of EE, BNRist, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5023755254","display_name":"Huazhong Yang","orcid":"https://orcid.org/0000-0003-2421-353X"},"institutions":[{"id":"https://openalex.org/I99065089","display_name":"Tsinghua University","ror":"https://ror.org/03cve4549","country_code":"CN","type":"education","lineage":["https://openalex.org/I99065089"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Huazhong Yang","raw_affiliation_strings":["Dept. of EE, BNRist, Tsinghua University"],"affiliations":[{"raw_affiliation_string":"Dept. of EE, BNRist, Tsinghua University","institution_ids":["https://openalex.org/I99065089"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":18.584,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":73,"citation_normalized_percentile":{"value":0.999954,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":98,"max":99},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10502","display_name":"Memristive Devices for Neuromorphic Computing","score":1.0,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12808","display_name":"Ferroelectric Devices for Low-Power Nanoscale Applications","score":0.999,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Theory and Applications of Extreme Learning Machines","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/neuromorphic-computing","display_name":"Neuromorphic Computing","score":0.526154},{"id":"https://openalex.org/keywords/brain-inspired-computing","display_name":"Brain-inspired Computing","score":0.525657},{"id":"https://openalex.org/keywords/in-memory-processing","display_name":"In-Memory Processing","score":0.4870403}],"concepts":[{"id":"https://openalex.org/C182019814","wikidata":"https://www.wikidata.org/wiki/Q1143830","display_name":"Resistive random-access memory","level":3,"score":0.87917006},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8051374},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6767722},{"id":"https://openalex.org/C28855332","wikidata":"https://www.wikidata.org/wiki/Q198099","display_name":"Quantization (signal processing)","level":2,"score":0.6075981},{"id":"https://openalex.org/C2779960059","wikidata":"https://www.wikidata.org/wiki/Q7113681","display_name":"Overhead (engineering)","level":2,"score":0.5152057},{"id":"https://openalex.org/C2742236","wikidata":"https://www.wikidata.org/wiki/Q924713","display_name":"Efficient energy use","level":2,"score":0.5013201},{"id":"https://openalex.org/C123593499","wikidata":"https://www.wikidata.org/wiki/Q6008583","display_name":"In-Memory Processing","level":5,"score":0.4870403},{"id":"https://openalex.org/C113775141","wikidata":"https://www.wikidata.org/wiki/Q428691","display_name":"Computer engineering","level":1,"score":0.4178263},{"id":"https://openalex.org/C9390403","wikidata":"https://www.wikidata.org/wiki/Q3966","display_name":"Computer hardware","level":1,"score":0.34383756},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.30372918},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.2626111},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.07693264},{"id":"https://openalex.org/C97854310","wikidata":"https://www.wikidata.org/wiki/Q19541","display_name":"Search engine","level":2,"score":0.076873064},{"id":"https://openalex.org/C165801399","wikidata":"https://www.wikidata.org/wiki/Q25428","display_name":"Voltage","level":2,"score":0.0},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.0},{"id":"https://openalex.org/C194222762","wikidata":"https://www.wikidata.org/wiki/Q114486","display_name":"Query by Example","level":4,"score":0.0},{"id":"https://openalex.org/C119599485","wikidata":"https://www.wikidata.org/wiki/Q43035","display_name":"Electrical engineering","level":1,"score":0.0},{"id":"https://openalex.org/C164120249","wikidata":"https://www.wikidata.org/wiki/Q995982","display_name":"Web search query","level":3,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3316781.3317739","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3316781.3317739","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1145/3316781.3317739","pdf_url":"https://dl.acm.org/doi/pdf/10.1145/3316781.3317739","source":null,"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/7","display_name":"Affordable and clean energy","score":0.9}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1686810756","https://openalex.org/W1966939297","https://openalex.org/W1993163906","https://openalex.org/W2004823737","https://openalex.org/W2112796928","https://openalex.org/W2164819109","https://openalex.org/W2194775991","https://openalex.org/W2292965952","https://openalex.org/W2399958287","https://openalex.org/W2408724663","https://openalex.org/W2433248078","https://openalex.org/W2469490737","https://openalex.org/W2508602506","https://openalex.org/W2518281301","https://openalex.org/W2588666075","https://openalex.org/W2592515961","https://openalex.org/W2613989746","https://openalex.org/W2794288888","https://openalex.org/W2798554798","https://openalex.org/W2798982017","https://openalex.org/W2899868573","https://openalex.org/W2951978180","https://openalex.org/W2964164125","https://openalex.org/W4243519499","https://openalex.org/W4254672563"],"related_works":["https://openalex.org/W4308870977","https://openalex.org/W4225907024","https://openalex.org/W3164445786","https://openalex.org/W3137037072","https://openalex.org/W2993390155","https://openalex.org/W2983750276","https://openalex.org/W2912892722","https://openalex.org/W2891417865","https://openalex.org/W2802367674","https://openalex.org/W2562493617"],"abstract_inverted_index":{"Convolutional":[0],"Neural":[1],"Networks":[2],"(CNNs)":[3],"play":[4],"a":[5,48,88,111],"vital":[6],"role":[7],"in":[8,24],"machine":[9],"learning.":[10],"Emerging":[11],"resistive":[12],"random-access":[13],"memories":[14],"(RRAMs)":[15],"and":[16,29,46,110,139,173],"RRAM-based":[17],"Processing-In-Memory":[18],"architectures":[19,198],"have":[20,74],"demonstrated":[21],"great":[22],"potentials":[23],"boosting":[25],"both":[26],"the":[27,37,151,165,185],"performance":[28],"energy":[30,176,187],"efficiency":[31,188],"of":[32,101],"CNNs.":[33,84],"However,":[34],"restricted":[35],"by":[36],"immature":[38],"process":[39],"technology,":[40],"it":[41],"is":[42,189],"hard":[43],"to":[44],"implement":[45],"fabricate":[47],"CNN":[49,64,91,114,132],"accelerator":[50],"chip":[51],"based":[52,63,94,117,197],"on":[53,68,95,118,177],"multi-bit":[54],"RRAM":[55,62,103,196],"devices.":[56],"In":[57],"addition,":[58],"existing":[59,195],"single":[60,96,119],"bit":[61,97,120],"accelerators":[65],"only":[66,200],"focus":[67],"binary":[69],"or":[70],"ternary":[71],"CNNs":[72,153],"which":[73,99],"more":[75],"than":[76],"10%":[77],"accuracy":[78,128,182],"loss":[79],"compared":[80,193],"with":[81,135,155,179,194,199],"full":[82,130],"precision":[83,131,143,157],"This":[85],"paper":[86],"proposes":[87],"configurable":[89,112],"multi-precision":[90,113,152],"computing":[92,104,115,171,175],"framework":[93,167],"RRAM,":[98],"consists":[100],"an":[102],"overhead":[105],"aware":[106],"network":[107],"quantization":[108],"algorithm":[109],"architecture":[116,147],"RRAM.":[121],"The":[122,145],"proposed":[123,166],"method":[124],"can":[125,168],"achieve":[126],"equivalent":[127,186],"as":[129],"but":[133],"also":[134],"lower":[136],"storage":[137],"consumption":[138],"latency":[140],"via":[141],"multiple":[142],"quantization.":[144],"designed":[146],"supports":[148],"for":[149],"accelerating":[150],"even":[154],"various":[156],"among":[158],"different":[159],"layers.":[160],"Experiment":[161],"results":[162],"show":[163],"that":[164],"reduce":[169],"70%":[170],"area":[172,202],"75%":[174],"average,":[178],"nearly":[180],"no":[181],"loss.":[183],"And":[184],"1.6":[190],"~":[191],"8.6\u00d7":[192],"1.07%":[201],"overhead.":[203]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2946659370","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":9},{"year":2022,"cited_by_count":13},{"year":2021,"cited_by_count":22},{"year":2020,"cited_by_count":20},{"year":2019,"cited_by_count":1}],"updated_date":"2024-11-18T11:48:20.137207","created_date":"2019-05-29"}