{"id":"https://openalex.org/W3031923829","doi":"https://doi.org/10.1145/3313831.3376447","title":"Silva: Interactively Assessing Machine Learning Fairness Using Causality","display_name":"Silva: Interactively Assessing Machine Learning Fairness Using Causality","publication_year":2020,"publication_date":"2020-04-21","ids":{"openalex":"https://openalex.org/W3031923829","doi":"https://doi.org/10.1145/3313831.3376447","mag":"3031923829"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3313831.3376447","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113817523","display_name":"Jing Nathan Yan","orcid":null},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jing Nathan Yan","raw_affiliation_strings":["Cornell University, Ithaca, NY, USA"],"affiliations":[{"raw_affiliation_string":"Cornell University, Ithaca, NY, USA","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5050920147","display_name":"Ziwei Gu","orcid":"https://orcid.org/0000-0001-9044-2651"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Ziwei Gu","raw_affiliation_strings":["Cornell University, Ithaca, NY, USA"],"affiliations":[{"raw_affiliation_string":"Cornell University, Ithaca, NY, USA","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5102046369","display_name":"Hubert Lin","orcid":null},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hubert Lin","raw_affiliation_strings":["Cornell University, Ithaca, NY, USA"],"affiliations":[{"raw_affiliation_string":"Cornell University, Ithaca, NY, USA","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5024501566","display_name":"Jeffrey M. Rzeszotarski","orcid":"https://orcid.org/0000-0002-4317-9501"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Jeffrey M. Rzeszotarski","raw_affiliation_strings":["Cornell University, Ithaca, NY, USA"],"affiliations":[{"raw_affiliation_string":"Cornell University, Ithaca, NY, USA","institution_ids":["https://openalex.org/I205783295"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":6.582,"has_fulltext":false,"cited_by_count":38,"citation_normalized_percentile":{"value":0.998225,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":96,"max":97},"biblio":{"volume":null,"issue":null,"first_page":"1","last_page":"13"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10883","display_name":"Ethics and Social Impacts of AI","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/3311","display_name":"Safety Research"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T10883","display_name":"Ethics and Social Impacts of AI","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/3311","display_name":"Safety Research"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12026","display_name":"Explainable Artificial Intelligence (XAI)","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11689","display_name":"Adversarial Robustness in Machine Learning","score":0.9709,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/causality","display_name":"Causality","score":0.62089396}],"concepts":[{"id":"https://openalex.org/C2779913896","wikidata":"https://www.wikidata.org/wiki/Q7063001","display_name":"Notice","level":2,"score":0.8615207},{"id":"https://openalex.org/C2780719617","wikidata":"https://www.wikidata.org/wiki/Q1030752","display_name":"Salient","level":2,"score":0.817536},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79245955},{"id":"https://openalex.org/C64357122","wikidata":"https://www.wikidata.org/wiki/Q1149766","display_name":"Causality (physics)","level":2,"score":0.62089396},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.55167234},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.46038982},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.33469117},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3313831.3376447","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320309856","funder_display_name":"National Youth Science Foundation","award_id":"1850195"}],"datasets":[],"versions":[],"referenced_works_count":60,"referenced_works":["https://openalex.org/W1511986666","https://openalex.org/W1540016313","https://openalex.org/W1558585115","https://openalex.org/W1604857681","https://openalex.org/W1819662813","https://openalex.org/W1902387477","https://openalex.org/W1961345416","https://openalex.org/W1971790785","https://openalex.org/W1979769549","https://openalex.org/W2014352947","https://openalex.org/W2048087720","https://openalex.org/W2100960835","https://openalex.org/W2113764854","https://openalex.org/W2116984840","https://openalex.org/W2140911775","https://openalex.org/W2143117649","https://openalex.org/W2149252982","https://openalex.org/W2154237551","https://openalex.org/W2157508661","https://openalex.org/W2162670686","https://openalex.org/W2165190832","https://openalex.org/W2272449688","https://openalex.org/W2337934060","https://openalex.org/W2419181674","https://openalex.org/W2493343568","https://openalex.org/W2530395818","https://openalex.org/W2568887718","https://openalex.org/W2573863263","https://openalex.org/W2584805976","https://openalex.org/W2589056603","https://openalex.org/W2752983833","https://openalex.org/W2753845591","https://openalex.org/W2786004891","https://openalex.org/W2786242872","https://openalex.org/W2788651580","https://openalex.org/W2792183666","https://openalex.org/W2795743913","https://openalex.org/W2798682670","https://openalex.org/W2808450727","https://openalex.org/W2888944692","https://openalex.org/W2889073286","https://openalex.org/W2948130259","https://openalex.org/W2952449794","https://openalex.org/W2962977061","https://openalex.org/W2963100392","https://openalex.org/W2963116854","https://openalex.org/W2963174898","https://openalex.org/W2963178340","https://openalex.org/W2963453196","https://openalex.org/W2963588812","https://openalex.org/W2967579878","https://openalex.org/W2981358273","https://openalex.org/W3099361686","https://openalex.org/W3100046612","https://openalex.org/W3106076062","https://openalex.org/W3122548859","https://openalex.org/W3123374861","https://openalex.org/W4288359825","https://openalex.org/W4289751798","https://openalex.org/W4296978576"],"related_works":["https://openalex.org/W4400794747","https://openalex.org/W4300782058","https://openalex.org/W4250645680","https://openalex.org/W3018282762","https://openalex.org/W2791183434","https://openalex.org/W2558055997","https://openalex.org/W2394387726","https://openalex.org/W2378724474","https://openalex.org/W2353369313","https://openalex.org/W2086339586"],"abstract_inverted_index":{"Machine":[0],"learning":[1,52],"models":[2,53],"risk":[3],"encoding":[4],"unfairness":[5,47],"on":[6],"the":[7,79,94],"part":[8],"of":[9,25,46,81,93],"their":[10],"developers":[11],"or":[12,31,50],"data":[13],"sources.":[14],"However,":[15],"assessing":[16],"fairness":[17,101],"is":[18],"challenging":[19],"as":[20],"analysts":[21],"might":[22],"misidentify":[23],"sources":[24,45],"bias,":[26],"fail":[27],"to":[28,59,98],"notice":[29],"them,":[30],"misapply":[32],"metrics.":[33,76],"In":[34],"this":[35],"paper":[36],"we":[37],"introduce":[38],"Silva,":[39,82],"a":[40,64],"system":[41],"for":[42],"exploring":[43],"potential":[44],"in":[48,96],"datasets":[49],"machine":[51],"interactively.":[54],"Silva":[55],"directs":[56],"user":[57],"attention":[58],"relationships":[60],"between":[61],"attributes":[62],"through":[63],"global":[65],"causal":[66],"view,":[67],"provides":[68],"interactive":[69],"recommendations,":[70],"presents":[71],"intermediate":[72],"results,":[73],"and":[74,86,89],"visualizes":[75],"We":[77],"describe":[78],"implementation":[80],"identify":[83],"salient":[84],"design":[85],"technical":[87],"challenges,":[88],"provide":[90],"an":[91,99],"evaluation":[92],"tool":[95],"comparison":[97],"existing":[100],"optimization":[102],"tool.":[103]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3031923829","counts_by_year":[{"year":2024,"cited_by_count":9},{"year":2023,"cited_by_count":8},{"year":2022,"cited_by_count":11},{"year":2021,"cited_by_count":8},{"year":2020,"cited_by_count":1}],"updated_date":"2024-12-12T03:55:38.425616","created_date":"2020-06-05"}