{"id":"https://openalex.org/W2911802745","doi":"https://doi.org/10.1145/3308558.3313697","title":"Addressing Trust Bias for Unbiased Learning-to-Rank","display_name":"Addressing Trust Bias for Unbiased Learning-to-Rank","publication_year":2019,"publication_date":"2019-05-13","ids":{"openalex":"https://openalex.org/W2911802745","doi":"https://doi.org/10.1145/3308558.3313697","mag":"2911802745"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3308558.3313697","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101806067","display_name":"Aman Agarwal","orcid":"https://orcid.org/0000-0002-4406-9937"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Aman Agarwal","raw_affiliation_strings":["Cornell, USA"],"affiliations":[{"raw_affiliation_string":"Cornell, USA","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5064608039","display_name":"Xuanhui Wang","orcid":"https://orcid.org/0009-0000-1388-1423"},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Xuanhui Wang","raw_affiliation_strings":["Google, USA"],"affiliations":[{"raw_affiliation_string":"Google, USA","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100354225","display_name":"Cheng Li","orcid":"https://orcid.org/0000-0001-6110-8099"},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Cheng Li","raw_affiliation_strings":["Google, USA"],"affiliations":[{"raw_affiliation_string":"Google, USA","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5032248436","display_name":"Michael Bendersky","orcid":"https://orcid.org/0000-0002-2941-6240"},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Michael Bendersky","raw_affiliation_strings":["Google, USA"],"affiliations":[{"raw_affiliation_string":"Google, USA","institution_ids":["https://openalex.org/I1291425158"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5037200145","display_name":"Marc Najork","orcid":"https://orcid.org/0000-0003-1423-0854"},"institutions":[{"id":"https://openalex.org/I1291425158","display_name":"Google (United States)","ror":"https://ror.org/00njsd438","country_code":"US","type":"company","lineage":["https://openalex.org/I1291425158","https://openalex.org/I4210128969"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Marc Najork","raw_affiliation_strings":["Google, USA"],"affiliations":[{"raw_affiliation_string":"Google, USA","institution_ids":["https://openalex.org/I1291425158"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":7.793,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":62,"citation_normalized_percentile":{"value":0.999817,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":null,"issue":null,"first_page":"4","last_page":"14"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10286","display_name":"Information Retrieval Techniques and Evaluation","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10286","display_name":"Information Retrieval Techniques and Evaluation","score":0.9944,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11182","display_name":"Mechanism Design in Auctions and Procurement Contracts","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11704","display_name":"Crowdsourcing for Research and Data Collection","score":0.9839,"subfield":{"id":"https://openalex.org/subfields/1706","display_name":"Computer Science Applications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/learning-to-rank","display_name":"Learning to Rank","score":0.619565},{"id":"https://openalex.org/keywords/rank","display_name":"Rank (graph theory)","score":0.5674486},{"id":"https://openalex.org/keywords/participatory-sensing","display_name":"Participatory Sensing","score":0.524571},{"id":"https://openalex.org/keywords/behavioral-research","display_name":"Behavioral Research","score":0.501232}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.74774945},{"id":"https://openalex.org/C108650721","wikidata":"https://www.wikidata.org/wiki/Q1783253","display_name":"Counterfactual thinking","level":2,"score":0.68397737},{"id":"https://openalex.org/C86037889","wikidata":"https://www.wikidata.org/wiki/Q4330127","display_name":"Learning to rank","level":3,"score":0.6699321},{"id":"https://openalex.org/C99498987","wikidata":"https://www.wikidata.org/wiki/Q2210247","display_name":"Noise (video)","level":3,"score":0.58860487},{"id":"https://openalex.org/C164226766","wikidata":"https://www.wikidata.org/wiki/Q7293202","display_name":"Rank (graph theory)","level":2,"score":0.5674486},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.52490604},{"id":"https://openalex.org/C189430467","wikidata":"https://www.wikidata.org/wiki/Q7293293","display_name":"Ranking (information retrieval)","level":2,"score":0.51631945},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.48098624},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.44204462},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.32604402},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.15435794},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3308558.3313697","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.42,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":41,"referenced_works":["https://openalex.org/W1480376833","https://openalex.org/W1678356000","https://openalex.org/W1809653203","https://openalex.org/W1835900096","https://openalex.org/W1855846637","https://openalex.org/W1972676371","https://openalex.org/W1973435495","https://openalex.org/W1974360117","https://openalex.org/W1981316359","https://openalex.org/W1992549066","https://openalex.org/W2026784708","https://openalex.org/W2047221353","https://openalex.org/W2055598786","https://openalex.org/W2069870183","https://openalex.org/W2090883204","https://openalex.org/W2099213975","https://openalex.org/W2106630408","https://openalex.org/W2115584760","https://openalex.org/W2122124659","https://openalex.org/W2138909795","https://openalex.org/W2149427297","https://openalex.org/W2150291618","https://openalex.org/W2152314154","https://openalex.org/W2155587858","https://openalex.org/W2188353343","https://openalex.org/W2279176662","https://openalex.org/W2340526403","https://openalex.org/W2402441596","https://openalex.org/W2507134384","https://openalex.org/W2604520541","https://openalex.org/W2769473018","https://openalex.org/W2797400361","https://openalex.org/W2798855994","https://openalex.org/W2806205339","https://openalex.org/W2897183834","https://openalex.org/W2898073868","https://openalex.org/W2964297722","https://openalex.org/W3099420497","https://openalex.org/W3104349857","https://openalex.org/W3105712174","https://openalex.org/W4247950230"],"related_works":["https://openalex.org/W4385565564","https://openalex.org/W3160516639","https://openalex.org/W3127142483","https://openalex.org/W2971071571","https://openalex.org/W2922169395","https://openalex.org/W2898073868","https://openalex.org/W2798835721","https://openalex.org/W2387658907","https://openalex.org/W2385796165","https://openalex.org/W2138488530"],"abstract_inverted_index":{"Existing":[0],"unbiased":[1,60,136,160],"learning-to-rank":[2,61,161],"models":[3],"use":[4,112],"counterfactual":[5],"inference,":[6],"notably":[7],"Inverse":[8],"Propensity":[9],"Scoring":[10],"(IPS),":[11],"to":[12,42,81,92,111,117],"learn":[13],"a":[14,36,75,113,124,129],"ranking":[15],"function":[16],"from":[17,99],"biased":[18],"click":[19,24,55,85,100,119],"data.":[20],"They":[21],"handle":[22],"the":[23,31,59,66,69,158],"incompleteness":[25],"bias,":[26],"but":[27],"usually":[28],"assume":[29],"that":[30,107,127,151],"clicks":[32],"are":[33],"noise-free,":[34],"i.e.,":[35],"clicked":[37],"document":[38],"is":[39,109],"always":[40],"assumed":[41],"be":[43],"relevant.":[44],"In":[45],"this":[46,50],"paper,":[47],"we":[48,64,105],"relax":[49],"unrealistic":[51],"assumption":[52],"and":[53,73,96,121,149],"study":[54],"noise":[56,67,120],"explicitly":[57],"in":[58,102],"setting.":[62],"Specifically,":[63],"model":[65,154],"as":[68],"position-dependent":[70],"trust":[71,97],"bias":[72,98],"propose":[74,88,123],"noise-aware":[76],"Position-Based":[77],"Model,":[78],"named":[79],"TrustPBM,":[80],"better":[82],"capture":[83],"user":[84],"behavior.":[86],"We":[87,138],"an":[89],"Expectation-Maximization":[90],"algorithm":[91],"estimate":[93],"both":[94],"examination":[95],"data":[101,147],"TrustPBM.":[103],"Furthermore,":[104],"show":[106],"it":[108],"difficult":[110],"pure":[114],"IPS":[115,134],"method":[116,126],"incorporate":[118],"thus":[122],"novel":[125],"combines":[128],"Bayes":[130],"rule":[131],"application":[132],"with":[133],"for":[135],"learning-to-rank.":[137],"evaluate":[139],"our":[140,152],"proposed":[141,153],"methods":[142],"on":[143],"three":[144],"personal":[145],"search":[146],"sets":[148],"demonstrate":[150],"can":[155],"significantly":[156],"outperform":[157],"existing":[159],"methods.":[162]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2911802745","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":13},{"year":2022,"cited_by_count":13},{"year":2021,"cited_by_count":14},{"year":2020,"cited_by_count":14},{"year":2019,"cited_by_count":2}],"updated_date":"2024-12-02T15:14:25.897309","created_date":"2019-02-21"}