{"id":"https://openalex.org/W2912422269","doi":"https://doi.org/10.1145/3308558.3313592","title":"Deriving User- and Content-specific Rewards for Contextual Bandits","display_name":"Deriving User- and Content-specific Rewards for Contextual Bandits","publication_year":2019,"publication_date":"2019-05-13","ids":{"openalex":"https://openalex.org/W2912422269","doi":"https://doi.org/10.1145/3308558.3313592","mag":"2912422269"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3308558.3313592","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5022003705","display_name":"Paolo Dragone","orcid":null},"institutions":[{"id":"https://openalex.org/I193223587","display_name":"University of Trento","ror":"https://ror.org/05trd4x28","country_code":"IT","type":"education","lineage":["https://openalex.org/I193223587"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Paolo Dragone","raw_affiliation_strings":["University of Trento, Italy"],"affiliations":[{"raw_affiliation_string":"University of Trento, Italy","institution_ids":["https://openalex.org/I193223587"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5018503243","display_name":"Rishabh Mehrotra","orcid":"https://orcid.org/0000-0002-0836-4605"},"institutions":[],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Rishabh Mehrotra","raw_affiliation_strings":["Spotify, United Kingdom"],"affiliations":[{"raw_affiliation_string":"Spotify, United Kingdom","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5002597222","display_name":"Mounia Lalmas","orcid":"https://orcid.org/0000-0002-3531-3096"},"institutions":[],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Mounia Lalmas","raw_affiliation_strings":["Spotify, United Kingdom"],"affiliations":[{"raw_affiliation_string":"Spotify, United Kingdom","institution_ids":[]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.833,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":12,"citation_normalized_percentile":{"value":0.910354,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":87,"max":88},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12101","display_name":"Optimization of Multi-Armed Bandit Problems","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T12101","display_name":"Optimization of Multi-Armed Bandit Problems","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10203","display_name":"Recommender System Technologies","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12761","display_name":"Adaptation to Concept Drift in Data Streams","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/context-aware-recommender-systems","display_name":"Context-Aware Recommender Systems","score":0.61352},{"id":"https://openalex.org/keywords/contextual-bandits","display_name":"Contextual Bandits","score":0.600648},{"id":"https://openalex.org/keywords/bandit-optimization","display_name":"Bandit Optimization","score":0.600506},{"id":"https://openalex.org/keywords/content-based-recommendation","display_name":"Content-Based Recommendation","score":0.585985},{"id":"https://openalex.org/keywords/click-through-rate-prediction","display_name":"Click-Through Rate Prediction","score":0.565682}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.834033},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.6954206},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.6917366},{"id":"https://openalex.org/C557471498","wikidata":"https://www.wikidata.org/wiki/Q554950","display_name":"Recommender system","level":2,"score":0.61913556},{"id":"https://openalex.org/C182365436","wikidata":"https://www.wikidata.org/wiki/Q50701","display_name":"Variable (mathematics)","level":2,"score":0.51928896},{"id":"https://openalex.org/C14036430","wikidata":"https://www.wikidata.org/wiki/Q3736076","display_name":"Function (biology)","level":2,"score":0.49368748},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.34250003},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.28331238},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.16211715},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.08509502},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C78458016","wikidata":"https://www.wikidata.org/wiki/Q840400","display_name":"Evolutionary biology","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3308558.3313592","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1524701945","https://openalex.org/W1721811070","https://openalex.org/W1982204215","https://openalex.org/W2009799282","https://openalex.org/W2023599408","https://openalex.org/W2038385982","https://openalex.org/W2099111195","https://openalex.org/W2117309679","https://openalex.org/W2133576408","https://openalex.org/W2136944193","https://openalex.org/W2138909795","https://openalex.org/W2158312787","https://openalex.org/W2166237624","https://openalex.org/W2170443290","https://openalex.org/W2270249641","https://openalex.org/W2295598076","https://openalex.org/W2337164530","https://openalex.org/W2434205482","https://openalex.org/W2748075772","https://openalex.org/W2783175414","https://openalex.org/W2783573456","https://openalex.org/W2788295351","https://openalex.org/W2796774312","https://openalex.org/W2799155063","https://openalex.org/W2809162153","https://openalex.org/W2893370267","https://openalex.org/W2962818688","https://openalex.org/W3099420497","https://openalex.org/W3102476541","https://openalex.org/W3102778384","https://openalex.org/W3116843828"],"related_works":["https://openalex.org/W4390273403","https://openalex.org/W4386781444","https://openalex.org/W4246980185","https://openalex.org/W4238861846","https://openalex.org/W3197542405","https://openalex.org/W3151146928","https://openalex.org/W3125580266","https://openalex.org/W3092950680","https://openalex.org/W2418190244","https://openalex.org/W2150182025"],"abstract_inverted_index":{"Bandit":[0],"algorithms":[1,17],"have":[2],"gained":[3],"increased":[4],"attention":[5],"in":[6,182],"recommender":[7],"systems,":[8],"as":[9,28,31],"they":[10],"provide":[11,97],"effective":[12],"and":[13,89,118,129,148],"scalable":[14],"recommendations.":[15],"These":[16],"use":[18],"reward":[19,58,101,174],"functions,":[20],"usually":[21],"based":[22,70,103,173],"on":[23,71,104,113],"a":[24,37,42,61,64,72,98,151],"numeric":[25,65],"variable":[26,66],"such":[27],"click-through":[29],"rates,":[30],"the":[32,57,81,105,114,119,158,188],"basis":[33],"for":[34,84],"optimization.":[35],"On":[36],"popular":[38],"music":[39],"streaming":[40,77,108,133,155],"service,":[41],"contextual":[43],"bandit":[44],"algorithm":[45],"is":[46,60],"used":[47,162],"to":[48,52,54,96,142,163,167,177,187],"decide":[49],"which":[50],"content":[51,122,130],"recommend":[53],"users,":[55],"where":[56],"function":[59],"binarization":[62],"of":[63,75,116,121,146,179],"that":[67,107],"defines":[68],"success":[69],"static":[73],"threshold":[74],"user":[76,82,117,128],"time:":[78],"1":[79],"if":[80],"streamed":[83],"at":[85],"least":[86],"30":[87],"seconds":[88],"0":[90],"otherwise.":[91],"We":[92],"explore":[93],"alternative":[94],"methods":[95],"more":[99],"informed":[100],"function,":[102],"assumptions":[106],"time":[109],"distribution":[110],"heavily":[111],"depends":[112],"type":[115,120],"being":[123],"streamed.":[124],"To":[125],"automatically":[126],"extract":[127,144],"groups":[131],"from":[132,150],"data,":[134],"we":[135],"employ":[136],"\"co-clustering\",":[137],"an":[138],"unsupervised":[139],"learning":[140],"technique":[141],"simultaneously":[143],"clusters":[145],"rows":[147],"columns":[149],"co-occurrence":[152],"matrix.":[153],"The":[154],"distributions":[156],"within":[157],"co-clusters":[159],"are":[160],"then":[161],"define":[164],"rewards":[165],"specific":[166],"each":[168],"co-cluster.":[169],"Our":[170],"proposed":[171],"co-clustered":[172],"functions":[175],"lead":[176],"improvement":[178],"over":[180],"25%":[181],"expected":[183],"stream":[184],"rate,":[185],"compared":[186],"standard":[189],"binarized":[190],"rewards.":[191]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2912422269","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":3},{"year":2019,"cited_by_count":4}],"updated_date":"2024-11-22T13:55:08.885238","created_date":"2019-02-21"}