{"id":"https://openalex.org/W2953122946","doi":"https://doi.org/10.1145/3307334.3328659","title":"CNN Based Human Detection for Unmanned Aerial Vehicle (poster)","display_name":"CNN Based Human Detection for Unmanned Aerial Vehicle (poster)","publication_year":2019,"publication_date":"2019-06-12","ids":{"openalex":"https://openalex.org/W2953122946","doi":"https://doi.org/10.1145/3307334.3328659","mag":"2953122946"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3307334.3328659","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"proceedings-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100705921","display_name":"Sanghun Kim","orcid":"https://orcid.org/0000-0002-1423-6116"},"institutions":[{"id":"https://openalex.org/I4210131650","display_name":"Korea Electronics Technology Institute","ror":"https://ror.org/039k6f508","country_code":"KR","type":"facility","lineage":["https://openalex.org/I2801339556","https://openalex.org/I4210089395","https://openalex.org/I4210131650"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Sanghun Kim","raw_affiliation_strings":["Korea Electronics Technology Institute, Gyeonggi-do Seongnam-si, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Korea Electronics Technology Institute, Gyeonggi-do Seongnam-si, Republic of Korea","institution_ids":["https://openalex.org/I4210131650"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022815420","display_name":"Dongwoo Kwon","orcid":"https://orcid.org/0000-0003-3063-594X"},"institutions":[{"id":"https://openalex.org/I4210131650","display_name":"Korea Electronics Technology Institute","ror":"https://ror.org/039k6f508","country_code":"KR","type":"facility","lineage":["https://openalex.org/I2801339556","https://openalex.org/I4210089395","https://openalex.org/I4210131650"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Dongwoo Kwon","raw_affiliation_strings":["Korea Electronics Technology Institute, Gyeonggi-do Seongnam-si, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Korea Electronics Technology Institute, Gyeonggi-do Seongnam-si, Republic of Korea","institution_ids":["https://openalex.org/I4210131650"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5047688314","display_name":"Youngmin Ji","orcid":null},"institutions":[{"id":"https://openalex.org/I4210131650","display_name":"Korea Electronics Technology Institute","ror":"https://ror.org/039k6f508","country_code":"KR","type":"facility","lineage":["https://openalex.org/I2801339556","https://openalex.org/I4210089395","https://openalex.org/I4210131650"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Youngmin Ji","raw_affiliation_strings":["Korea Electronics Technology Institute, Gyeonggi-do Seongnam-si, Republic of Korea"],"affiliations":[{"raw_affiliation_string":"Korea Electronics Technology Institute, Gyeonggi-do Seongnam-si, Republic of Korea","institution_ids":["https://openalex.org/I4210131650"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":1.64,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":5,"citation_normalized_percentile":{"value":0.91159,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":79,"max":80},"biblio":{"volume":null,"issue":null,"first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11211","display_name":"3D Surveying and Cultural Heritage","score":0.9939,"subfield":{"id":"https://openalex.org/subfields/1907","display_name":"Geology"},"field":{"id":"https://openalex.org/fields/19","display_name":"Earth and Planetary Sciences"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11164","display_name":"Remote Sensing and LiDAR Applications","score":0.9883,"subfield":{"id":"https://openalex.org/subfields/2305","display_name":"Environmental Engineering"},"field":{"id":"https://openalex.org/fields/23","display_name":"Environmental Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10331","display_name":"Video Surveillance and Tracking Methods","score":0.9805,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/drone","display_name":"Drone","score":0.91566396},{"id":"https://openalex.org/keywords/installation","display_name":"Installation","score":0.5192211},{"id":"https://openalex.org/keywords/ceiling","display_name":"Ceiling (cloud)","score":0.48436317}],"concepts":[{"id":"https://openalex.org/C59519942","wikidata":"https://www.wikidata.org/wiki/Q650665","display_name":"Drone","level":2,"score":0.91566396},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.7513427},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7290076},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.66321474},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.61465085},{"id":"https://openalex.org/C146778888","wikidata":"https://www.wikidata.org/wiki/Q836862","display_name":"Installation","level":2,"score":0.5192211},{"id":"https://openalex.org/C2777489069","wikidata":"https://www.wikidata.org/wiki/Q1589822","display_name":"Ceiling (cloud)","level":2,"score":0.48436317},{"id":"https://openalex.org/C2776151529","wikidata":"https://www.wikidata.org/wiki/Q3045304","display_name":"Object detection","level":3,"score":0.4232804},{"id":"https://openalex.org/C108583219","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep learning","level":2,"score":0.41700184},{"id":"https://openalex.org/C79403827","wikidata":"https://www.wikidata.org/wiki/Q3988","display_name":"Real-time computing","level":1,"score":0.34689468},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.2030538},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.17750853},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0},{"id":"https://openalex.org/C66938386","wikidata":"https://www.wikidata.org/wiki/Q633538","display_name":"Structural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1145/3307334.3328659","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Climate action","score":0.64,"id":"https://metadata.un.org/sdg/13"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":5,"referenced_works":["https://openalex.org/W2046286451","https://openalex.org/W2612449331","https://openalex.org/W2765781654","https://openalex.org/W2963037989","https://openalex.org/W3206840074"],"related_works":["https://openalex.org/W4386036939","https://openalex.org/W4379143281","https://openalex.org/W4327774218","https://openalex.org/W4312858960","https://openalex.org/W4247925126","https://openalex.org/W4229448053","https://openalex.org/W3200286695","https://openalex.org/W2969228573","https://openalex.org/W2605096541","https://openalex.org/W2059768187"],"abstract_inverted_index":{"In":[0,30],"order":[1],"to":[2,44,82],"utilize":[3],"a":[4,10,20,35,45,59,108],"unmanned":[5],"aerial":[6],"device":[7],"such":[8],"as":[9,67],"drone":[11,46],"in":[12,76],"terms":[13],"of":[14,23,37,61,97,103],"reconnaissance,":[15],"surveillance":[16],"and":[17,100,112],"disaster":[18],"management,":[19],"technique":[21],"capable":[22],"performing":[24],"real-time":[25],"human":[26,38,87],"detection":[27,39],"is":[28,58],"needed.":[29],"this":[31],"study,":[32],"we":[33],"introduce":[34],"method":[36],"by":[40,47],"constructing":[41],"environment":[42],"similar":[43],"installing":[48],"wide":[49],"angle":[50],"lens":[51],"camera":[52],"on":[53,74,94],"the":[54,80,101],"ceiling.":[55],"Tiny-Yolo,":[56],"which":[57],"kind":[60],"Convolutional":[62],"Neural":[63],"Network,":[64],"was":[65,91,105],"used":[66],"recognition":[68,104],"technology.":[69],"Camera":[70],"sensors":[71],"were":[72,115],"installed":[73],"ceilings":[75],"various":[77],"places":[78],"inside":[79],"building":[81],"collect":[83],"training":[84],"data":[85],"for":[86],"detection.":[88],"The":[89],"Training":[90],"performed":[92],"based":[93],"4,000":[95],"pieces":[96],"collected":[98],"data,":[99],"accuracy":[102],"measured.":[106],"As":[107],"result,":[109],"95.37%":[110],"precision":[111],"96.60%":[113],"recall":[114],"obtained.":[116]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2953122946","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":1},{"year":2019,"cited_by_count":1}],"updated_date":"2025-03-15T18:22:30.521268","created_date":"2019-06-27"}